Cargando…

ST6Gal-I overexpression facilitates prostate cancer progression via the PI3K/Akt/GSK-3β/β-catenin signaling pathway

ST6Gal-I sialyltransferase adds α2,6-linked sialic acids to the terminal ends of glycan chains of glycoproteins and glycolipids. ST6Gal-I is reportedly upregulated in many cancers, including hepatocellular carcinoma, ovarian cancer and breast cancer. However, the expression and function of ST6Gal-I...

Descripción completa

Detalles Bibliográficos
Autores principales: Wei, Anwen, Fan, Bo, Zhao, Yujie, Zhang, Han, Wang, Liping, Yu, Xiao, Yuan, Qingmin, Yang, Deyong, Wang, Shujing
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Impact Journals LLC 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5323162/
https://www.ncbi.nlm.nih.gov/pubmed/27588482
http://dx.doi.org/10.18632/oncotarget.11699
Descripción
Sumario:ST6Gal-I sialyltransferase adds α2,6-linked sialic acids to the terminal ends of glycan chains of glycoproteins and glycolipids. ST6Gal-I is reportedly upregulated in many cancers, including hepatocellular carcinoma, ovarian cancer and breast cancer. However, the expression and function of ST6Gal-I in prostate cancer (PCa) and the mechanism underlying this function remain largely unknown. In this study, we observed that ST6Gal-I expression was upregulated in human PCa tissues compared to non-malignant prostate tissues. High ST6Gal-I expression was positively correlated with Gleason scores, seminal vesicle involvement and poor survival in patients with PCa. ST6Gal-I knockdown in aggressive prostate cancer PC-3 and DU145 cells significantly inhibited the proliferation, growth, migration and invasion capabilities of these cells. ST6Gal-I knockdown decreased the levels of several PI3K/Akt/GSK-3β/ β-catenin pathway components, such as p-PI3K, (Ser473)p-Akt, (Ser9)p-GSK-3β and β-catenin. Furthermore, targeting this pathway with a PI3K inhibitor or Akt RNA interference decreased p-Akt, p-GSK-3β and β-catenin expression, resulting in decreased PC-3 and DU145 proliferation, migration and invasion. Taken together, these results indicate that ST6Gal-I plays a critical role in cell proliferation and invasion via the PI3K/Akt/GSK-3β/β-catenin signaling pathway during PCa progression and that it might be a promising target for PCa prognosis determination and therapy.