Cargando…

Interleukin-32α induces migration of human melanoma cells through downregulation of E-cadherin

Interleukin (IL)-32α, the shortest isoform of proinflammatory cytokine IL-32, is associated with various inflammatory diseases and cancers. However, its involvement in human melanoma is not understood. To determine the effect of IL-32α in melanoma, IL-32α levels were examined in human melanoma cell...

Descripción completa

Detalles Bibliográficos
Autores principales: Lee, Joohyun, Kim, Kyung Eun, Cheon, Soyoung, Song, Ju Han, Houh, Younkyung, Kim, Tae Sung, Gil, Minchan, Lee, Kyung Jin, Kim, Seonghan, Kim, Daejin, Hur, Dae Young, Yang, Yoolhee, Bang, Sa Ik, Park, Hyun Jeong, Cho, Daeho
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Impact Journals LLC 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5323195/
https://www.ncbi.nlm.nih.gov/pubmed/27589563
http://dx.doi.org/10.18632/oncotarget.11669
Descripción
Sumario:Interleukin (IL)-32α, the shortest isoform of proinflammatory cytokine IL-32, is associated with various inflammatory diseases and cancers. However, its involvement in human melanoma is not understood. To determine the effect of IL-32α in melanoma, IL-32α levels were examined in human melanoma cell lines that exhibit different migratory abilities. IL-32α levels were higher in human melanoma cell lines with more migratory ability. An IL-32α-overexpressing G361 human melanoma cell line was generated to investigate the effect of IL-32α on melanoma migration. IL-32α-overexpressing G361 cells (G361-IL-32α) exhibit an increased migratory ability compared to vector control cells (G361-vector). To identify factors involved in IL-32α-induced migration, we compared expression of E-cadherin in G361-vector and G361-IL-32α cells. We observed decreased levels of E-cadherin in G361-IL-32α cells, resulting in F-actin polymerization. To further investigate signaling pathways related to IL-32α-induced migration, we treated G361-vector and G361-IL-32α cells with PD98059, a selective MEK inhibitor. Inhibition of Erk1/2 by PD98059 restored E-cadherin expression and decreased IL-32α-induced migration. In addition, cell invasiveness of G361-IL-32α cells was tested using an in vivo lung metastasis model. As results, lung metastasis was significantly increased by IL-32α overexpression. Taken together, these data indicate that IL-32α induced human melanoma migration via Erk1/2 activation, which repressed E-cadherin expression. Our findings suggest that IL-32α is a novel regulator of migration in melanoma.