Cargando…
Multilevel Models for Intensive Longitudinal Data with Heterogeneous Autoregressive Errors: The Effect of Misspecification and Correction with Cholesky Transformation
Intensive longitudinal studies, such as ecological momentary assessment studies using electronic diaries, are gaining popularity across many areas of psychology. Multilevel models (MLMs) are most widely used analytical tools for intensive longitudinal data (ILD). Although ILD often have individually...
Autores principales: | Jahng, Seungmin, Wood, Phillip K. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5323419/ https://www.ncbi.nlm.nih.gov/pubmed/28286490 http://dx.doi.org/10.3389/fpsyg.2017.00262 |
Ejemplares similares
-
To center or not to center? Investigating inertia with a multilevel autoregressive model
por: Hamaker, Ellen L., et al.
Publicado: (2015) -
Incorporating measurement error in n = 1 psychological autoregressive modeling
por: Schuurman, Noémi K., et al.
Publicado: (2015) -
Implementation of Cholesky Decomposition with SIMD vectorization
por: Balasubramanian, Rahul
Publicado: (2016) -
Mindfulness training promotes upward spirals of positive affect and cognition: multilevel and autoregressive latent trajectory modeling analyses
por: Garland, Eric L., et al.
Publicado: (2015) -
Cholesky factorization on SIMD multi-core architectures
por: Lemaitre, Florian, et al.
Publicado: (2017)