Cargando…
Polymorphisms in drug-metabolizing enzymes and steady-state exemestane concentration in post-menopausal patients with breast cancer
Discovery of clinical and genetic predictors of exemestane pharmacokinetics was attempted in 246 post-menopausal patients with breast cancer enrolled on a prospective clinical study. A sample was collected two hours after exemestane dosing at a 1 or 3 month study visit to measure drug concentration....
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5323433/ https://www.ncbi.nlm.nih.gov/pubmed/27549341 http://dx.doi.org/10.1038/tpj.2016.60 |
Sumario: | Discovery of clinical and genetic predictors of exemestane pharmacokinetics was attempted in 246 post-menopausal patients with breast cancer enrolled on a prospective clinical study. A sample was collected two hours after exemestane dosing at a 1 or 3 month study visit to measure drug concentration. The primary hypothesis was that patients carrying the low-activity CYP3A4*22 (rs35599367) SNP would have greater exemestane concentration. Additional SNPs in genes relevant to exemestane metabolism (CYP1A1/2, CYP1B1, CYP3A4, CYP4A11, AKR1C3/4, AKR7A2) were screened in secondary analyses and adjusted for clinical covariates. CYP3A4*22 was associated with a 54% increase in exemestane concentration (p<0.01). Concentration was greater in patients who reported White race, had elevated aminotransferases, renal insufficiency, lower body mass index, and had not received chemotherapy (all p<0.05), and CYP3A4*22 maintained significance after adjustment for covariates (p<0.01). These genetic and clinical predictors of exemestane concentration may be useful for treatment individualization in patients with breast cancer. |
---|