Cargando…
Computational methods using genome-wide association studies to predict radiotherapy complications and to identify correlative molecular processes
The biological cause of clinically observed variability of normal tissue damage following radiotherapy is poorly understood. We hypothesized that machine/statistical learning methods using single nucleotide polymorphism (SNP)-based genome-wide association studies (GWAS) would identify groups of pati...
Autores principales: | Oh, Jung Hun, Kerns, Sarah, Ostrer, Harry, Powell, Simon N., Rosenstein, Barry, Deasy, Joseph O. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5324069/ https://www.ncbi.nlm.nih.gov/pubmed/28233873 http://dx.doi.org/10.1038/srep43381 |
Ejemplares similares
-
Meta-analysis of Genome Wide Association Studies Identifies Genetic Markers of Late Toxicity Following Radiotherapy for Prostate Cancer
por: Kerns, Sarah L., et al.
Publicado: (2016) -
STROGAR – STrengthening the Reporting Of Genetic Association studies in Radiogenomics
por: Kerns, Sarah L., et al.
Publicado: (2013) -
Survey of Radiation Oncologists to Assess Interest and Potential Use of a Genetic Test Predicting Susceptibility for the Development of Toxicities After Prostate Cancer Radiation Therapy
por: Collado, Kayla, et al.
Publicado: (2020) -
A Bioinformatics Filtering Strategy for Identifying Radiation Response Biomarker Candidates
por: Oh, Jung Hun, et al.
Publicado: (2012) -
Identification of biological correlates associated with respiratory failure in COVID-19
por: Oh, Jung Hun, et al.
Publicado: (2020)