Cargando…
Deliberate and Accidental Gas-Phase Alkali Doping of Chalcogenide Semiconductors: Cu(In,Ga)Se(2)
Alkali metal doping is essential to achieve highly efficient energy conversion in Cu(In,Ga)Se(2) (CIGSe) solar cells. Doping is normally achieved through solid state reactions, but recent observations of gas-phase alkali transport in the kesterite sulfide (Cu(2)ZnSnS(4)) system (re)open the way to a...
Autores principales: | , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5324121/ https://www.ncbi.nlm.nih.gov/pubmed/28233864 http://dx.doi.org/10.1038/srep43266 |
_version_ | 1782510159078096896 |
---|---|
author | Colombara, Diego Berner, Ulrich Ciccioli, Andrea Malaquias, João C. Bertram, Tobias Crossay, Alexandre Schöneich, Michael Meadows, Helene J. Regesch, David Delsante, Simona Gigli, Guido Valle, Nathalie Guillot, Jérome El Adib, Brahime Grysan, Patrick Dale, Phillip J. |
author_facet | Colombara, Diego Berner, Ulrich Ciccioli, Andrea Malaquias, João C. Bertram, Tobias Crossay, Alexandre Schöneich, Michael Meadows, Helene J. Regesch, David Delsante, Simona Gigli, Guido Valle, Nathalie Guillot, Jérome El Adib, Brahime Grysan, Patrick Dale, Phillip J. |
author_sort | Colombara, Diego |
collection | PubMed |
description | Alkali metal doping is essential to achieve highly efficient energy conversion in Cu(In,Ga)Se(2) (CIGSe) solar cells. Doping is normally achieved through solid state reactions, but recent observations of gas-phase alkali transport in the kesterite sulfide (Cu(2)ZnSnS(4)) system (re)open the way to a novel gas-phase doping strategy. However, the current understanding of gas-phase alkali transport is very limited. This work (i) shows that CIGSe device efficiency can be improved from 2% to 8% by gas-phase sodium incorporation alone, (ii) identifies the most likely routes for gas-phase alkali transport based on mass spectrometric studies, (iii) provides thermochemical computations to rationalize the observations and (iv) critically discusses the subject literature with the aim to better understand the chemical basis of the phenomenon. These results suggest that accidental alkali metal doping occurs all the time, that a controlled vapor pressure of alkali metal could be applied during growth to dope the semiconductor, and that it may have to be accounted for during the currently used solid state doping routes. It is concluded that alkali gas-phase transport occurs through a plurality of routes and cannot be attributed to one single source. |
format | Online Article Text |
id | pubmed-5324121 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Nature Publishing Group |
record_format | MEDLINE/PubMed |
spelling | pubmed-53241212017-03-01 Deliberate and Accidental Gas-Phase Alkali Doping of Chalcogenide Semiconductors: Cu(In,Ga)Se(2) Colombara, Diego Berner, Ulrich Ciccioli, Andrea Malaquias, João C. Bertram, Tobias Crossay, Alexandre Schöneich, Michael Meadows, Helene J. Regesch, David Delsante, Simona Gigli, Guido Valle, Nathalie Guillot, Jérome El Adib, Brahime Grysan, Patrick Dale, Phillip J. Sci Rep Article Alkali metal doping is essential to achieve highly efficient energy conversion in Cu(In,Ga)Se(2) (CIGSe) solar cells. Doping is normally achieved through solid state reactions, but recent observations of gas-phase alkali transport in the kesterite sulfide (Cu(2)ZnSnS(4)) system (re)open the way to a novel gas-phase doping strategy. However, the current understanding of gas-phase alkali transport is very limited. This work (i) shows that CIGSe device efficiency can be improved from 2% to 8% by gas-phase sodium incorporation alone, (ii) identifies the most likely routes for gas-phase alkali transport based on mass spectrometric studies, (iii) provides thermochemical computations to rationalize the observations and (iv) critically discusses the subject literature with the aim to better understand the chemical basis of the phenomenon. These results suggest that accidental alkali metal doping occurs all the time, that a controlled vapor pressure of alkali metal could be applied during growth to dope the semiconductor, and that it may have to be accounted for during the currently used solid state doping routes. It is concluded that alkali gas-phase transport occurs through a plurality of routes and cannot be attributed to one single source. Nature Publishing Group 2017-02-24 /pmc/articles/PMC5324121/ /pubmed/28233864 http://dx.doi.org/10.1038/srep43266 Text en Copyright © 2017, The Author(s) http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ |
spellingShingle | Article Colombara, Diego Berner, Ulrich Ciccioli, Andrea Malaquias, João C. Bertram, Tobias Crossay, Alexandre Schöneich, Michael Meadows, Helene J. Regesch, David Delsante, Simona Gigli, Guido Valle, Nathalie Guillot, Jérome El Adib, Brahime Grysan, Patrick Dale, Phillip J. Deliberate and Accidental Gas-Phase Alkali Doping of Chalcogenide Semiconductors: Cu(In,Ga)Se(2) |
title | Deliberate and Accidental Gas-Phase Alkali Doping of Chalcogenide Semiconductors: Cu(In,Ga)Se(2) |
title_full | Deliberate and Accidental Gas-Phase Alkali Doping of Chalcogenide Semiconductors: Cu(In,Ga)Se(2) |
title_fullStr | Deliberate and Accidental Gas-Phase Alkali Doping of Chalcogenide Semiconductors: Cu(In,Ga)Se(2) |
title_full_unstemmed | Deliberate and Accidental Gas-Phase Alkali Doping of Chalcogenide Semiconductors: Cu(In,Ga)Se(2) |
title_short | Deliberate and Accidental Gas-Phase Alkali Doping of Chalcogenide Semiconductors: Cu(In,Ga)Se(2) |
title_sort | deliberate and accidental gas-phase alkali doping of chalcogenide semiconductors: cu(in,ga)se(2) |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5324121/ https://www.ncbi.nlm.nih.gov/pubmed/28233864 http://dx.doi.org/10.1038/srep43266 |
work_keys_str_mv | AT colombaradiego deliberateandaccidentalgasphasealkalidopingofchalcogenidesemiconductorscuingase2 AT bernerulrich deliberateandaccidentalgasphasealkalidopingofchalcogenidesemiconductorscuingase2 AT ciccioliandrea deliberateandaccidentalgasphasealkalidopingofchalcogenidesemiconductorscuingase2 AT malaquiasjoaoc deliberateandaccidentalgasphasealkalidopingofchalcogenidesemiconductorscuingase2 AT bertramtobias deliberateandaccidentalgasphasealkalidopingofchalcogenidesemiconductorscuingase2 AT crossayalexandre deliberateandaccidentalgasphasealkalidopingofchalcogenidesemiconductorscuingase2 AT schoneichmichael deliberateandaccidentalgasphasealkalidopingofchalcogenidesemiconductorscuingase2 AT meadowshelenej deliberateandaccidentalgasphasealkalidopingofchalcogenidesemiconductorscuingase2 AT regeschdavid deliberateandaccidentalgasphasealkalidopingofchalcogenidesemiconductorscuingase2 AT delsantesimona deliberateandaccidentalgasphasealkalidopingofchalcogenidesemiconductorscuingase2 AT gigliguido deliberateandaccidentalgasphasealkalidopingofchalcogenidesemiconductorscuingase2 AT vallenathalie deliberateandaccidentalgasphasealkalidopingofchalcogenidesemiconductorscuingase2 AT guillotjerome deliberateandaccidentalgasphasealkalidopingofchalcogenidesemiconductorscuingase2 AT eladibbrahime deliberateandaccidentalgasphasealkalidopingofchalcogenidesemiconductorscuingase2 AT grysanpatrick deliberateandaccidentalgasphasealkalidopingofchalcogenidesemiconductorscuingase2 AT dalephillipj deliberateandaccidentalgasphasealkalidopingofchalcogenidesemiconductorscuingase2 |