Cargando…
The First Spectrum of Manganese, Mn I
In 1894, two short series of threefold spectral terms were discovered in the arc spectrum of manganese, and in 1922 other regularities involving fivefold and sixfold terms were discovered by Catalán who coined the word “multiplet” for the group of related lines resulting from combinations of such co...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
[Gaithersburg, MD] : U.S. Dept. of Commerce, National Institute of Standards and Technology
1964
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5325175/ https://www.ncbi.nlm.nih.gov/pubmed/31834718 http://dx.doi.org/10.6028/jres.068A.003 |
Sumario: | In 1894, two short series of threefold spectral terms were discovered in the arc spectrum of manganese, and in 1922 other regularities involving fivefold and sixfold terms were discovered by Catalán who coined the word “multiplet” for the group of related lines resulting from combinations of such complex terms. Multiplet analyses of complex spectra promptly led to the present formal quantum interpretation of all such phenomena, but comparable progress in the analysis of the Mn I spectrum was handicapped by the paucity of experimental data. New observations of about 2500 wavelengths and intensities plus 440 Zeeman patterns made available in 1948–49 have now been completely exploited to derive additional atomic energy levels and thereby explain more of the observed Mn I lines. The result is that a total of 42 even terms with 125 levels and 60 g-values have now been designated and allocated to electron configurations, and 94 odd terms with 266 levels, 164 g-values, plus 13 miscellaneous levels. These terms are distributed among four multiplicities (doublets, quartets, sextets, octets), and transitions between even and odd terms account for more than 2030 lines ranging in wavelength from 1785 Å to 17608 Å. |
---|