Cargando…

Chemoproteomic profiling and discovery of protein electrophiles in human cells

Activity-based protein profiling (ABPP) serves as a chemical proteomic platform to discover and characterize functional amino acids in proteins on the basis of their enhanced reactivity towards small-molecule probes. This approach, to date, has mainly targeted nucleophilic functional groups, such as...

Descripción completa

Detalles Bibliográficos
Autores principales: Matthews, Megan L, He, Lin, Horning, Benjamin D, Olson, Erika J, Correia, Bruno E, Yates, John R, Dawson, Philip E, Cravatt, Benjamin F
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5325178/
https://www.ncbi.nlm.nih.gov/pubmed/28221344
http://dx.doi.org/10.1038/nchem.2645
Descripción
Sumario:Activity-based protein profiling (ABPP) serves as a chemical proteomic platform to discover and characterize functional amino acids in proteins on the basis of their enhanced reactivity towards small-molecule probes. This approach, to date, has mainly targeted nucleophilic functional groups, such as the side chains of serine and cysteine, using electrophilic probes. We show here that "reverse-polarity" (RP)-ABPP using clickable, nucleophilic hydrazine probes can capture and identify protein-bound electrophiles in cells, including the pyruvoyl cofactor of S-adenosyl-l-methionine decarboxylase (AMD1), which we find is dynamically controlled by intracellular methionine concentrations, and a heretofore unknown modification – an N-terminally bound glyoxylyl group – in the poorly characterized protein secernin-3. RP-ABPP thus provides a versatile method to monitor the metabolic regulation of electrophilic cofactors and discover novel types of electrophilic modifications on proteins in human cells.