Cargando…
On the stability and dynamics of stochastic spiking neuron models: Nonlinear Hawkes process and point process GLMs
Point process generalized linear models (PP-GLMs) provide an important statistical framework for modeling spiking activity in single-neurons and neuronal networks. Stochastic stability is essential when sampling from these models, as done in computational neuroscience to analyze statistical properti...
Autores principales: | Gerhard, Felipe, Deger, Moritz, Truccolo, Wilson |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5325182/ https://www.ncbi.nlm.nih.gov/pubmed/28234899 http://dx.doi.org/10.1371/journal.pcbi.1005390 |
Ejemplares similares
-
Variational Bayesian Inference for Nonlinear Hawkes Process with Gaussian Process Self-Effects
por: Malem-Shinitski, Noa, et al.
Publicado: (2022) -
Adaptation to elastic loads and BMI robot controls during rat locomotion examined with point-process GLMs
por: Song, Weiguo, et al.
Publicado: (2015) -
Linking neural mass signals and spike train statistics through point process and linear systems theory
por: Deger, Moritz, et al.
Publicado: (2013) -
Approximate inference for spatial GLMs
por: Eidsvik, Jo, et al.
Publicado: (2006) -
Stabilizing working memory in spiking networks with biologically plausible synaptic dynamics
por: Seeholzer, Alexander, et al.
Publicado: (2014)