Cargando…
Clustering cancer gene expression data by projective clustering ensemble
Gene expression data analysis has paramount implications for gene treatments, cancer diagnosis and other domains. Clustering is an important and promising tool to analyze gene expression data. Gene expression data is often characterized by a large amount of genes but with limited samples, thus vario...
Autores principales: | Yu, Xianxue, Yu, Guoxian, Wang, Jun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5325197/ https://www.ncbi.nlm.nih.gov/pubmed/28234920 http://dx.doi.org/10.1371/journal.pone.0171429 |
Ejemplares similares
-
Network-aided Bi-Clustering for discovering cancer subtypes
por: Yu, Guoxian, et al.
Publicado: (2017) -
Fast Constrained Spectral Clustering and Cluster Ensemble with Random Projection
por: Liu, Wenfen, et al.
Publicado: (2017) -
On an ensemble algorithm for clustering cancer patient data
por: Qi, Ran, et al.
Publicado: (2013) -
A Random Walk Based Cluster Ensemble Approach for Data Integration and Cancer Subtyping
por: Yang, Chao, et al.
Publicado: (2019) -
ClusterMI: Detecting High-Order SNP Interactions Based on Clustering and Mutual Information
por: Cao, Xia, et al.
Publicado: (2018)