Cargando…
Gene expression signature based screening identifies ribonucleotide reductase as a candidate therapeutic target in Ewing sarcoma
There is a critical need in cancer therapeutics to identify targeted therapies that will improve outcomes and decrease toxicities compared to conventional, cytotoxic chemotherapy. Ewing sarcoma is a highly aggressive bone and soft tissue cancer that is caused by the EWS-FLI1 fusion protein. Although...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Impact Journals LLC
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5325343/ https://www.ncbi.nlm.nih.gov/pubmed/27557498 http://dx.doi.org/10.18632/oncotarget.11416 |
_version_ | 1782510362749304832 |
---|---|
author | Goss, Kelli L. Gordon, David J. |
author_facet | Goss, Kelli L. Gordon, David J. |
author_sort | Goss, Kelli L. |
collection | PubMed |
description | There is a critical need in cancer therapeutics to identify targeted therapies that will improve outcomes and decrease toxicities compared to conventional, cytotoxic chemotherapy. Ewing sarcoma is a highly aggressive bone and soft tissue cancer that is caused by the EWS-FLI1 fusion protein. Although EWS-FLI1 is specific for cancer cells, and required for tumorigenesis, directly targeting this transcription factor has proven challenging. Consequently, targeting unique dependencies or key downstream mediators of EWS-FLI1 represent important alternative strategies. We used gene expression data derived from a genetically defined model of Ewing sarcoma to interrogate the Connectivity Map and identify a class of drugs, iron chelators, that downregulate a significant number of EWS-FLI1 target genes. We then identified ribonucleotide reductase M2 (RRM2), the iron-dependent subunit of ribonucleotide reductase (RNR), as one mediator of iron chelator toxicity in Ewing sarcoma cells. Inhibition of RNR in Ewing sarcoma cells caused apoptosis in vitro and attenuated tumor growth in an in vivo, xenograft model. Additionally, we discovered that the sensitivity of Ewing sarcoma cells to inhibition or suppression of RNR is mediated, in part, by high levels of SLFN11, a protein that sensitizes cells to DNA damage. This work demonstrates a unique dependency of Ewing sarcoma cells on RNR and supports further investigation of RNR inhibitors, which are currently used in clinical practice, as a novel approach for treating Ewing sarcoma. |
format | Online Article Text |
id | pubmed-5325343 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Impact Journals LLC |
record_format | MEDLINE/PubMed |
spelling | pubmed-53253432017-03-10 Gene expression signature based screening identifies ribonucleotide reductase as a candidate therapeutic target in Ewing sarcoma Goss, Kelli L. Gordon, David J. Oncotarget Research Paper There is a critical need in cancer therapeutics to identify targeted therapies that will improve outcomes and decrease toxicities compared to conventional, cytotoxic chemotherapy. Ewing sarcoma is a highly aggressive bone and soft tissue cancer that is caused by the EWS-FLI1 fusion protein. Although EWS-FLI1 is specific for cancer cells, and required for tumorigenesis, directly targeting this transcription factor has proven challenging. Consequently, targeting unique dependencies or key downstream mediators of EWS-FLI1 represent important alternative strategies. We used gene expression data derived from a genetically defined model of Ewing sarcoma to interrogate the Connectivity Map and identify a class of drugs, iron chelators, that downregulate a significant number of EWS-FLI1 target genes. We then identified ribonucleotide reductase M2 (RRM2), the iron-dependent subunit of ribonucleotide reductase (RNR), as one mediator of iron chelator toxicity in Ewing sarcoma cells. Inhibition of RNR in Ewing sarcoma cells caused apoptosis in vitro and attenuated tumor growth in an in vivo, xenograft model. Additionally, we discovered that the sensitivity of Ewing sarcoma cells to inhibition or suppression of RNR is mediated, in part, by high levels of SLFN11, a protein that sensitizes cells to DNA damage. This work demonstrates a unique dependency of Ewing sarcoma cells on RNR and supports further investigation of RNR inhibitors, which are currently used in clinical practice, as a novel approach for treating Ewing sarcoma. Impact Journals LLC 2016-08-19 /pmc/articles/PMC5325343/ /pubmed/27557498 http://dx.doi.org/10.18632/oncotarget.11416 Text en Copyright: © 2016 Goss and Gordon http://creativecommons.org/licenses/by/3.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Paper Goss, Kelli L. Gordon, David J. Gene expression signature based screening identifies ribonucleotide reductase as a candidate therapeutic target in Ewing sarcoma |
title | Gene expression signature based screening identifies ribonucleotide reductase as a candidate therapeutic target in Ewing sarcoma |
title_full | Gene expression signature based screening identifies ribonucleotide reductase as a candidate therapeutic target in Ewing sarcoma |
title_fullStr | Gene expression signature based screening identifies ribonucleotide reductase as a candidate therapeutic target in Ewing sarcoma |
title_full_unstemmed | Gene expression signature based screening identifies ribonucleotide reductase as a candidate therapeutic target in Ewing sarcoma |
title_short | Gene expression signature based screening identifies ribonucleotide reductase as a candidate therapeutic target in Ewing sarcoma |
title_sort | gene expression signature based screening identifies ribonucleotide reductase as a candidate therapeutic target in ewing sarcoma |
topic | Research Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5325343/ https://www.ncbi.nlm.nih.gov/pubmed/27557498 http://dx.doi.org/10.18632/oncotarget.11416 |
work_keys_str_mv | AT gosskellil geneexpressionsignaturebasedscreeningidentifiesribonucleotidereductaseasacandidatetherapeutictargetinewingsarcoma AT gordondavidj geneexpressionsignaturebasedscreeningidentifiesribonucleotidereductaseasacandidatetherapeutictargetinewingsarcoma |