Cargando…
Functional diversity of secreted cestode Kunitz proteins: Inhibition of serine peptidases and blockade of cation channels
We previously reported a multigene family of monodomain Kunitz proteins from Echinococcus granulosus (EgKU-1-EgKU-8), and provided evidence that some EgKUs are secreted by larval worms to the host interface. In addition, functional studies and homology modeling suggested that, similar to monodomain...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5325619/ https://www.ncbi.nlm.nih.gov/pubmed/28192542 http://dx.doi.org/10.1371/journal.ppat.1006169 |
_version_ | 1782510424837586944 |
---|---|
author | Fló, Martín Margenat, Mariana Pellizza, Leonardo Graña, Martín Durán, Rosario Báez, Adriana Salceda, Emilio Soto, Enrique Alvarez, Beatriz Fernández, Cecilia |
author_facet | Fló, Martín Margenat, Mariana Pellizza, Leonardo Graña, Martín Durán, Rosario Báez, Adriana Salceda, Emilio Soto, Enrique Alvarez, Beatriz Fernández, Cecilia |
author_sort | Fló, Martín |
collection | PubMed |
description | We previously reported a multigene family of monodomain Kunitz proteins from Echinococcus granulosus (EgKU-1-EgKU-8), and provided evidence that some EgKUs are secreted by larval worms to the host interface. In addition, functional studies and homology modeling suggested that, similar to monodomain Kunitz families present in animal venoms, the E. granulosus family could include peptidase inhibitors as well as channel blockers. Using enzyme kinetics and whole-cell patch-clamp, we now demonstrate that the EgKUs are indeed functionally diverse. In fact, most of them behaved as high affinity inhibitors of either chymotrypsin (EgKU-2-EgKU-3) or trypsin (EgKU-5-EgKU-8). In contrast, the close paralogs EgKU-1 and EgKU-4 blocked voltage-dependent potassium channels (K(v)); and also pH-dependent sodium channels (ASICs), while showing null (EgKU-1) or marginal (EgKU-4) peptidase inhibitory activity. We also confirmed the presence of EgKUs in secretions from other parasite stages, notably from adult worms and metacestodes. Interestingly, data from genome projects reveal that at least eight additional monodomain Kunitz proteins are encoded in the genome; that particular EgKUs are up-regulated in various stages; and that analogous Kunitz families exist in other medically important cestodes, but not in trematodes. Members of this expanded family of secreted cestode proteins thus have the potential to block, through high affinity interactions, the function of host counterparts (either peptidases or cation channels) and contribute to the establishment and persistence of infection. From a more general perspective, our results confirm that multigene families of Kunitz inhibitors from parasite secretions and animal venoms display a similar functional diversity and thus, that host-parasite co-evolution may also drive the emergence of a new function associated with the Kunitz scaffold. |
format | Online Article Text |
id | pubmed-5325619 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-53256192017-03-10 Functional diversity of secreted cestode Kunitz proteins: Inhibition of serine peptidases and blockade of cation channels Fló, Martín Margenat, Mariana Pellizza, Leonardo Graña, Martín Durán, Rosario Báez, Adriana Salceda, Emilio Soto, Enrique Alvarez, Beatriz Fernández, Cecilia PLoS Pathog Research Article We previously reported a multigene family of monodomain Kunitz proteins from Echinococcus granulosus (EgKU-1-EgKU-8), and provided evidence that some EgKUs are secreted by larval worms to the host interface. In addition, functional studies and homology modeling suggested that, similar to monodomain Kunitz families present in animal venoms, the E. granulosus family could include peptidase inhibitors as well as channel blockers. Using enzyme kinetics and whole-cell patch-clamp, we now demonstrate that the EgKUs are indeed functionally diverse. In fact, most of them behaved as high affinity inhibitors of either chymotrypsin (EgKU-2-EgKU-3) or trypsin (EgKU-5-EgKU-8). In contrast, the close paralogs EgKU-1 and EgKU-4 blocked voltage-dependent potassium channels (K(v)); and also pH-dependent sodium channels (ASICs), while showing null (EgKU-1) or marginal (EgKU-4) peptidase inhibitory activity. We also confirmed the presence of EgKUs in secretions from other parasite stages, notably from adult worms and metacestodes. Interestingly, data from genome projects reveal that at least eight additional monodomain Kunitz proteins are encoded in the genome; that particular EgKUs are up-regulated in various stages; and that analogous Kunitz families exist in other medically important cestodes, but not in trematodes. Members of this expanded family of secreted cestode proteins thus have the potential to block, through high affinity interactions, the function of host counterparts (either peptidases or cation channels) and contribute to the establishment and persistence of infection. From a more general perspective, our results confirm that multigene families of Kunitz inhibitors from parasite secretions and animal venoms display a similar functional diversity and thus, that host-parasite co-evolution may also drive the emergence of a new function associated with the Kunitz scaffold. Public Library of Science 2017-02-13 /pmc/articles/PMC5325619/ /pubmed/28192542 http://dx.doi.org/10.1371/journal.ppat.1006169 Text en © 2017 Fló et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Fló, Martín Margenat, Mariana Pellizza, Leonardo Graña, Martín Durán, Rosario Báez, Adriana Salceda, Emilio Soto, Enrique Alvarez, Beatriz Fernández, Cecilia Functional diversity of secreted cestode Kunitz proteins: Inhibition of serine peptidases and blockade of cation channels |
title | Functional diversity of secreted cestode Kunitz proteins: Inhibition of serine peptidases and blockade of cation channels |
title_full | Functional diversity of secreted cestode Kunitz proteins: Inhibition of serine peptidases and blockade of cation channels |
title_fullStr | Functional diversity of secreted cestode Kunitz proteins: Inhibition of serine peptidases and blockade of cation channels |
title_full_unstemmed | Functional diversity of secreted cestode Kunitz proteins: Inhibition of serine peptidases and blockade of cation channels |
title_short | Functional diversity of secreted cestode Kunitz proteins: Inhibition of serine peptidases and blockade of cation channels |
title_sort | functional diversity of secreted cestode kunitz proteins: inhibition of serine peptidases and blockade of cation channels |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5325619/ https://www.ncbi.nlm.nih.gov/pubmed/28192542 http://dx.doi.org/10.1371/journal.ppat.1006169 |
work_keys_str_mv | AT flomartin functionaldiversityofsecretedcestodekunitzproteinsinhibitionofserinepeptidasesandblockadeofcationchannels AT margenatmariana functionaldiversityofsecretedcestodekunitzproteinsinhibitionofserinepeptidasesandblockadeofcationchannels AT pellizzaleonardo functionaldiversityofsecretedcestodekunitzproteinsinhibitionofserinepeptidasesandblockadeofcationchannels AT granamartin functionaldiversityofsecretedcestodekunitzproteinsinhibitionofserinepeptidasesandblockadeofcationchannels AT duranrosario functionaldiversityofsecretedcestodekunitzproteinsinhibitionofserinepeptidasesandblockadeofcationchannels AT baezadriana functionaldiversityofsecretedcestodekunitzproteinsinhibitionofserinepeptidasesandblockadeofcationchannels AT salcedaemilio functionaldiversityofsecretedcestodekunitzproteinsinhibitionofserinepeptidasesandblockadeofcationchannels AT sotoenrique functionaldiversityofsecretedcestodekunitzproteinsinhibitionofserinepeptidasesandblockadeofcationchannels AT alvarezbeatriz functionaldiversityofsecretedcestodekunitzproteinsinhibitionofserinepeptidasesandblockadeofcationchannels AT fernandezcecilia functionaldiversityofsecretedcestodekunitzproteinsinhibitionofserinepeptidasesandblockadeofcationchannels |