Cargando…
Automated Method to Determine Two Critical Growth Stages of Wheat: Heading and Flowering
Recording growth stage information is an important aspect of precision agriculture, crop breeding and phenotyping. In practice, crop growth stage is still primarily monitored by-eye, which is not only laborious and time-consuming, but also subjective and error-prone. The application of computer visi...
Autores principales: | Sadeghi-Tehran, Pouria, Sabermanesh, Kasra, Virlet, Nicolas, Hawkesford, Malcolm J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5326764/ https://www.ncbi.nlm.nih.gov/pubmed/28289423 http://dx.doi.org/10.3389/fpls.2017.00252 |
Ejemplares similares
-
Multi-feature machine learning model for automatic segmentation of green fractional vegetation cover for high-throughput field phenotyping
por: Sadeghi-Tehran, Pouria, et al.
Publicado: (2017) -
DeepCount: In-Field Automatic Quantification of Wheat Spikes Using Simple Linear Iterative Clustering and Deep Convolutional Neural Networks
por: Sadeghi-Tehran, Pouria, et al.
Publicado: (2019) -
Scalable Database Indexing and Fast Image Retrieval Based on Deep Learning and Hierarchically Nested Structure Applied to Remote Sensing and Plant Biology
por: Sadeghi-Tehran, Pouria, et al.
Publicado: (2019) -
Modeling the spatial-spectral characteristics of plants for nutrient status identification using hyperspectral data and deep learning methods
por: Okyere, Frank Gyan, et al.
Publicado: (2023) -
Functional QTL mapping and genomic prediction of canopy height in wheat measured using a robotic field phenotyping platform
por: Lyra, Danilo H, et al.
Publicado: (2020)