Cargando…
Nonlinear population receptive field changes in human area V5/MT+ of healthy subjects with simulated visual field scotomas
There is extensive controversy over whether the adult visual cortex is able to reorganize following visual field loss (scotoma) as a result of retinal or cortical lesions. Functional magnetic resonance imaging (fMRI) methods provide a useful tool to study the aggregate receptive field properties and...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5327354/ https://www.ncbi.nlm.nih.gov/pubmed/26146195 http://dx.doi.org/10.1016/j.neuroimage.2015.06.085 |
_version_ | 1782510710810476544 |
---|---|
author | Papanikolaou, Amalia Keliris, Georgios A. Lee, Sangkyun Logothetis, Nikos K. Smirnakis, Stelios M. |
author_facet | Papanikolaou, Amalia Keliris, Georgios A. Lee, Sangkyun Logothetis, Nikos K. Smirnakis, Stelios M. |
author_sort | Papanikolaou, Amalia |
collection | PubMed |
description | There is extensive controversy over whether the adult visual cortex is able to reorganize following visual field loss (scotoma) as a result of retinal or cortical lesions. Functional magnetic resonance imaging (fMRI) methods provide a useful tool to study the aggregate receptive field properties and assess the capacity of the human visual cortex to reorganize following injury. However, these methods are prone to biases near the boundaries of the scotoma. Retinotopic changes resembling reorganization have been observed in the early visual cortex of normal subjects when the visual stimulus is masked to simulate retinal or cortical scotomas. It is not known how the receptive fields of higher visual areas, like hV5/MT+, are affected by partial stimulus deprivation. We measured population receptive field (pRF) responses in human area V5/MT+ of 5 healthy participants under full stimulation and compared them with responses obtained from the same area while masking the left superior quadrant of the visual field (“artificial scotoma” or AS). We found that pRF estimations in area hV5/MT+ are nonlinearly affected by the AS. Specifically, pRF centers shift towards the AS, while the pRF amplitude increases and the pRF size decreases near the AS border. The observed pRF changes do not reflect reorganization but reveal important properties of normal visual processing under different test-stimulus conditions. |
format | Online Article Text |
id | pubmed-5327354 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
record_format | MEDLINE/PubMed |
spelling | pubmed-53273542017-02-27 Nonlinear population receptive field changes in human area V5/MT+ of healthy subjects with simulated visual field scotomas Papanikolaou, Amalia Keliris, Georgios A. Lee, Sangkyun Logothetis, Nikos K. Smirnakis, Stelios M. Neuroimage Article There is extensive controversy over whether the adult visual cortex is able to reorganize following visual field loss (scotoma) as a result of retinal or cortical lesions. Functional magnetic resonance imaging (fMRI) methods provide a useful tool to study the aggregate receptive field properties and assess the capacity of the human visual cortex to reorganize following injury. However, these methods are prone to biases near the boundaries of the scotoma. Retinotopic changes resembling reorganization have been observed in the early visual cortex of normal subjects when the visual stimulus is masked to simulate retinal or cortical scotomas. It is not known how the receptive fields of higher visual areas, like hV5/MT+, are affected by partial stimulus deprivation. We measured population receptive field (pRF) responses in human area V5/MT+ of 5 healthy participants under full stimulation and compared them with responses obtained from the same area while masking the left superior quadrant of the visual field (“artificial scotoma” or AS). We found that pRF estimations in area hV5/MT+ are nonlinearly affected by the AS. Specifically, pRF centers shift towards the AS, while the pRF amplitude increases and the pRF size decreases near the AS border. The observed pRF changes do not reflect reorganization but reveal important properties of normal visual processing under different test-stimulus conditions. 2015-07-03 2015-10-15 /pmc/articles/PMC5327354/ /pubmed/26146195 http://dx.doi.org/10.1016/j.neuroimage.2015.06.085 Text en This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Article Papanikolaou, Amalia Keliris, Georgios A. Lee, Sangkyun Logothetis, Nikos K. Smirnakis, Stelios M. Nonlinear population receptive field changes in human area V5/MT+ of healthy subjects with simulated visual field scotomas |
title | Nonlinear population receptive field changes in human area V5/MT+ of healthy subjects with simulated visual field scotomas |
title_full | Nonlinear population receptive field changes in human area V5/MT+ of healthy subjects with simulated visual field scotomas |
title_fullStr | Nonlinear population receptive field changes in human area V5/MT+ of healthy subjects with simulated visual field scotomas |
title_full_unstemmed | Nonlinear population receptive field changes in human area V5/MT+ of healthy subjects with simulated visual field scotomas |
title_short | Nonlinear population receptive field changes in human area V5/MT+ of healthy subjects with simulated visual field scotomas |
title_sort | nonlinear population receptive field changes in human area v5/mt+ of healthy subjects with simulated visual field scotomas |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5327354/ https://www.ncbi.nlm.nih.gov/pubmed/26146195 http://dx.doi.org/10.1016/j.neuroimage.2015.06.085 |
work_keys_str_mv | AT papanikolaouamalia nonlinearpopulationreceptivefieldchangesinhumanareav5mtofhealthysubjectswithsimulatedvisualfieldscotomas AT kelirisgeorgiosa nonlinearpopulationreceptivefieldchangesinhumanareav5mtofhealthysubjectswithsimulatedvisualfieldscotomas AT leesangkyun nonlinearpopulationreceptivefieldchangesinhumanareav5mtofhealthysubjectswithsimulatedvisualfieldscotomas AT logothetisnikosk nonlinearpopulationreceptivefieldchangesinhumanareav5mtofhealthysubjectswithsimulatedvisualfieldscotomas AT smirnakissteliosm nonlinearpopulationreceptivefieldchangesinhumanareav5mtofhealthysubjectswithsimulatedvisualfieldscotomas |