Cargando…

Interleukin-27 Enhances the Potential of Reactive Oxygen Species Generation from Monocyte-derived Macrophages and Dendritic cells by Induction of p47(phox)

Interleukin (IL)-27, a member of the IL-12 cytokine family, plays an important and diverse role in the function of the immune system. We have previously demonstrated that IL-27 is an anti-viral cytokine which inhibits HIV-1, HIV-2, Influenza virus and herpes simplex virus infection, and enhances the...

Descripción completa

Detalles Bibliográficos
Autores principales: Sowrirajan, Bharatwaj, Saito, Yoshiro, Poudyal, Deepak, Chen, Qian, Sui, Hongyan, DeRavin, Suk See, Imamichi, Hiromi, Sato, Toyotaka, Kuhns, Douglas B., Noguchi, Noriko, Malech, Harry L., Lane, H. Clifford, Imamichi, Tomozumi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5327488/
https://www.ncbi.nlm.nih.gov/pubmed/28240310
http://dx.doi.org/10.1038/srep43441
Descripción
Sumario:Interleukin (IL)-27, a member of the IL-12 cytokine family, plays an important and diverse role in the function of the immune system. We have previously demonstrated that IL-27 is an anti-viral cytokine which inhibits HIV-1, HIV-2, Influenza virus and herpes simplex virus infection, and enhances the potential of reactive oxygen species (ROS) generating activity during differentiation of monocytes to macrophages. In this study, we further investigated the mechanism of the enhanced potential for ROS generation by IL-27. Real time PCR, western blot and knock down assays demonstrate that IL-27 is able to enhance the potential of superoxide production not only during differentiation but also in terminally differentiated-macrophages and immature dendritic cells (iDC) in association with the induction of p47(phox), a cytosolic component of the ROS producing enzyme, NADPH oxidase, and the increase in amounts of phosphorylated p47(phox) upon stimulation. We also demonstrate that IL-27 is able to induce extracellular superoxide dismutase during differentiation of monocytes but not in terminal differentiated macrophages. Since ROS plays an important role in a variety of inflammation, our data demonstrate that IL-27 is a potent regulator of ROS induction and may be a novel therapeutic target.