Cargando…

Radioprotective effects of cimetidine on rats irradiated by long-term, low-dose-rate neutrons and (60)Co γ-rays

BACKGROUND: Cimetidine, an antagonist of histamine type II receptors, has shown protective effects against γ-rays or neutrons. However, there have been no reports on the effects of cimetidine against neutrons combined with γ-rays. This study was carried out to evaluate the protective effects of cime...

Descripción completa

Detalles Bibliográficos
Autores principales: Jiang, Ding-Wen, Wang, Qing-Rong, Shen, Xian-Rong, He, Ying, Qian, Tian-Tian, Liu, Qiong, Hou, Deng-Yong, Liu, Yu-Ming, Chen, Wei, Ren, Xin, Li, Ke-Xian
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5327571/
https://www.ncbi.nlm.nih.gov/pubmed/28261494
http://dx.doi.org/10.1186/s40779-017-0116-7
_version_ 1782510761366519808
author Jiang, Ding-Wen
Wang, Qing-Rong
Shen, Xian-Rong
He, Ying
Qian, Tian-Tian
Liu, Qiong
Hou, Deng-Yong
Liu, Yu-Ming
Chen, Wei
Ren, Xin
Li, Ke-Xian
author_facet Jiang, Ding-Wen
Wang, Qing-Rong
Shen, Xian-Rong
He, Ying
Qian, Tian-Tian
Liu, Qiong
Hou, Deng-Yong
Liu, Yu-Ming
Chen, Wei
Ren, Xin
Li, Ke-Xian
author_sort Jiang, Ding-Wen
collection PubMed
description BACKGROUND: Cimetidine, an antagonist of histamine type II receptors, has shown protective effects against γ-rays or neutrons. However, there have been no reports on the effects of cimetidine against neutrons combined with γ-rays. This study was carried out to evaluate the protective effects of cimetidine on rats exposed to long-term, low-dose-rate neutron and γ-ray combined irradiation (n-γ LDR). METHODS: Fifty male Sprague-Dawley (SD) rats were randomly divided into 5 groups: the normal control group, radiation model group, 20 mg/(kg · d) cimetidine group, 80 mg/(kg · d) cimetidine group and 160 mg/(kg · d) cimetidine group (10 rats per group). Except for the normal control group, 40 rats were simultaneously exposed to fission neutrons ((252)Cf, 0.085 mGy/h) for 22 h every day and γ-rays ((60)Co, 0.097 Gy/h) for 1.03 h once every three days, and the cimetidine groups were administered intragastrically with cimetidine at doses of 20, 80 and 160 mg/kg each day. Peripheral blood WBC of the rats was counted the day following exposure to γ-rays. The rats were anesthetized and sacrificed on the day following exposure to (252)Cf for 28 days. The spleen, thymus, testicle, liver and intestinal tract indexes were evaluated. The DNA content of bone marrow cells and concanavalin A (ConA)-induced lymphocyte proliferation were measured. The frequency of micronuclei in polychromatic erythrocytes (fMNPCEs), superoxide dismutase (SOD), malondialdehyde (MDA), and glutathione peroxidase (GSH-Px) in the serum and liver tissues were detected. RESULTS: The peripheral blood WBC in the cimetidine groups was increased significantly on the 8th day and the 26th day compared with those in the radiation model group. The spleen, thymus and testicle indexes of the cimetidine groups were higher than those of the radiation model group. The DNA content of bone marrow cells and lymphocyte proliferation in the cimetidine groups were increased significantly, and fMNPCE was reduced 1.41-1.77 fold in cimetidine treated groups. The activities of SOD and GSH-Px in the cimetidine groups were increased significantly, and the content of MDA in the cimetidine groups was decreased significantly. CONCLUSIONS: The results suggested that cimetidine alleviated damage induced by long-term, low-dose-rate neutron and γ combined irradiation via antioxidation and immunomodulation. Cimetidine might be useful as a potent radioprotector for radiotherapy patients as well as for occupational exposure workers.
format Online
Article
Text
id pubmed-5327571
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-53275712017-03-03 Radioprotective effects of cimetidine on rats irradiated by long-term, low-dose-rate neutrons and (60)Co γ-rays Jiang, Ding-Wen Wang, Qing-Rong Shen, Xian-Rong He, Ying Qian, Tian-Tian Liu, Qiong Hou, Deng-Yong Liu, Yu-Ming Chen, Wei Ren, Xin Li, Ke-Xian Mil Med Res Research BACKGROUND: Cimetidine, an antagonist of histamine type II receptors, has shown protective effects against γ-rays or neutrons. However, there have been no reports on the effects of cimetidine against neutrons combined with γ-rays. This study was carried out to evaluate the protective effects of cimetidine on rats exposed to long-term, low-dose-rate neutron and γ-ray combined irradiation (n-γ LDR). METHODS: Fifty male Sprague-Dawley (SD) rats were randomly divided into 5 groups: the normal control group, radiation model group, 20 mg/(kg · d) cimetidine group, 80 mg/(kg · d) cimetidine group and 160 mg/(kg · d) cimetidine group (10 rats per group). Except for the normal control group, 40 rats were simultaneously exposed to fission neutrons ((252)Cf, 0.085 mGy/h) for 22 h every day and γ-rays ((60)Co, 0.097 Gy/h) for 1.03 h once every three days, and the cimetidine groups were administered intragastrically with cimetidine at doses of 20, 80 and 160 mg/kg each day. Peripheral blood WBC of the rats was counted the day following exposure to γ-rays. The rats were anesthetized and sacrificed on the day following exposure to (252)Cf for 28 days. The spleen, thymus, testicle, liver and intestinal tract indexes were evaluated. The DNA content of bone marrow cells and concanavalin A (ConA)-induced lymphocyte proliferation were measured. The frequency of micronuclei in polychromatic erythrocytes (fMNPCEs), superoxide dismutase (SOD), malondialdehyde (MDA), and glutathione peroxidase (GSH-Px) in the serum and liver tissues were detected. RESULTS: The peripheral blood WBC in the cimetidine groups was increased significantly on the 8th day and the 26th day compared with those in the radiation model group. The spleen, thymus and testicle indexes of the cimetidine groups were higher than those of the radiation model group. The DNA content of bone marrow cells and lymphocyte proliferation in the cimetidine groups were increased significantly, and fMNPCE was reduced 1.41-1.77 fold in cimetidine treated groups. The activities of SOD and GSH-Px in the cimetidine groups were increased significantly, and the content of MDA in the cimetidine groups was decreased significantly. CONCLUSIONS: The results suggested that cimetidine alleviated damage induced by long-term, low-dose-rate neutron and γ combined irradiation via antioxidation and immunomodulation. Cimetidine might be useful as a potent radioprotector for radiotherapy patients as well as for occupational exposure workers. BioMed Central 2017-02-27 /pmc/articles/PMC5327571/ /pubmed/28261494 http://dx.doi.org/10.1186/s40779-017-0116-7 Text en © The Author(s). 2017 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
spellingShingle Research
Jiang, Ding-Wen
Wang, Qing-Rong
Shen, Xian-Rong
He, Ying
Qian, Tian-Tian
Liu, Qiong
Hou, Deng-Yong
Liu, Yu-Ming
Chen, Wei
Ren, Xin
Li, Ke-Xian
Radioprotective effects of cimetidine on rats irradiated by long-term, low-dose-rate neutrons and (60)Co γ-rays
title Radioprotective effects of cimetidine on rats irradiated by long-term, low-dose-rate neutrons and (60)Co γ-rays
title_full Radioprotective effects of cimetidine on rats irradiated by long-term, low-dose-rate neutrons and (60)Co γ-rays
title_fullStr Radioprotective effects of cimetidine on rats irradiated by long-term, low-dose-rate neutrons and (60)Co γ-rays
title_full_unstemmed Radioprotective effects of cimetidine on rats irradiated by long-term, low-dose-rate neutrons and (60)Co γ-rays
title_short Radioprotective effects of cimetidine on rats irradiated by long-term, low-dose-rate neutrons and (60)Co γ-rays
title_sort radioprotective effects of cimetidine on rats irradiated by long-term, low-dose-rate neutrons and (60)co γ-rays
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5327571/
https://www.ncbi.nlm.nih.gov/pubmed/28261494
http://dx.doi.org/10.1186/s40779-017-0116-7
work_keys_str_mv AT jiangdingwen radioprotectiveeffectsofcimetidineonratsirradiatedbylongtermlowdoserateneutronsand60cograys
AT wangqingrong radioprotectiveeffectsofcimetidineonratsirradiatedbylongtermlowdoserateneutronsand60cograys
AT shenxianrong radioprotectiveeffectsofcimetidineonratsirradiatedbylongtermlowdoserateneutronsand60cograys
AT heying radioprotectiveeffectsofcimetidineonratsirradiatedbylongtermlowdoserateneutronsand60cograys
AT qiantiantian radioprotectiveeffectsofcimetidineonratsirradiatedbylongtermlowdoserateneutronsand60cograys
AT liuqiong radioprotectiveeffectsofcimetidineonratsirradiatedbylongtermlowdoserateneutronsand60cograys
AT houdengyong radioprotectiveeffectsofcimetidineonratsirradiatedbylongtermlowdoserateneutronsand60cograys
AT liuyuming radioprotectiveeffectsofcimetidineonratsirradiatedbylongtermlowdoserateneutronsand60cograys
AT chenwei radioprotectiveeffectsofcimetidineonratsirradiatedbylongtermlowdoserateneutronsand60cograys
AT renxin radioprotectiveeffectsofcimetidineonratsirradiatedbylongtermlowdoserateneutronsand60cograys
AT likexian radioprotectiveeffectsofcimetidineonratsirradiatedbylongtermlowdoserateneutronsand60cograys