Cargando…

Recurrent patterns of DNA copy number alterations in tumors reflect metabolic selection pressures

Copy number alteration (CNA) profiling of human tumors has revealed recurrent patterns of DNA amplifications and deletions across diverse cancer types. These patterns are suggestive of conserved selection pressures during tumor evolution but cannot be fully explained by known oncogenes and tumor sup...

Descripción completa

Detalles Bibliográficos
Autores principales: Graham, Nicholas A, Minasyan, Aspram, Lomova, Anastasia, Cass, Ashley, Balanis, Nikolas G, Friedman, Michael, Chan, Shawna, Zhao, Sophie, Delgado, Adrian, Go, James, Beck, Lillie, Hurtz, Christian, Ng, Carina, Qiao, Rong, ten Hoeve, Johanna, Palaskas, Nicolaos, Wu, Hong, Müschen, Markus, Multani, Asha S, Port, Elisa, Larson, Steven M, Schultz, Nikolaus, Braas, Daniel, Christofk, Heather R, Mellinghoff, Ingo K, Graeber, Thomas G
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5327725/
https://www.ncbi.nlm.nih.gov/pubmed/28202506
http://dx.doi.org/10.15252/msb.20167159
_version_ 1782510794097819648
author Graham, Nicholas A
Minasyan, Aspram
Lomova, Anastasia
Cass, Ashley
Balanis, Nikolas G
Friedman, Michael
Chan, Shawna
Zhao, Sophie
Delgado, Adrian
Go, James
Beck, Lillie
Hurtz, Christian
Ng, Carina
Qiao, Rong
ten Hoeve, Johanna
Palaskas, Nicolaos
Wu, Hong
Müschen, Markus
Multani, Asha S
Port, Elisa
Larson, Steven M
Schultz, Nikolaus
Braas, Daniel
Christofk, Heather R
Mellinghoff, Ingo K
Graeber, Thomas G
author_facet Graham, Nicholas A
Minasyan, Aspram
Lomova, Anastasia
Cass, Ashley
Balanis, Nikolas G
Friedman, Michael
Chan, Shawna
Zhao, Sophie
Delgado, Adrian
Go, James
Beck, Lillie
Hurtz, Christian
Ng, Carina
Qiao, Rong
ten Hoeve, Johanna
Palaskas, Nicolaos
Wu, Hong
Müschen, Markus
Multani, Asha S
Port, Elisa
Larson, Steven M
Schultz, Nikolaus
Braas, Daniel
Christofk, Heather R
Mellinghoff, Ingo K
Graeber, Thomas G
author_sort Graham, Nicholas A
collection PubMed
description Copy number alteration (CNA) profiling of human tumors has revealed recurrent patterns of DNA amplifications and deletions across diverse cancer types. These patterns are suggestive of conserved selection pressures during tumor evolution but cannot be fully explained by known oncogenes and tumor suppressor genes. Using a pan‐cancer analysis of CNA data from patient tumors and experimental systems, here we show that principal component analysis‐defined CNA signatures are predictive of glycolytic phenotypes, including (18)F‐fluorodeoxy‐glucose (FDG) avidity of patient tumors, and increased proliferation. The primary CNA signature is enriched for p53 mutations and is associated with glycolysis through coordinate amplification of glycolytic genes and other cancer‐linked metabolic enzymes. A pan‐cancer and cross‐species comparison of CNAs highlighted 26 consistently altered DNA regions, containing 11 enzymes in the glycolysis pathway in addition to known cancer‐driving genes. Furthermore, exogenous expression of hexokinase and enolase enzymes in an experimental immortalization system altered the subsequent copy number status of the corresponding endogenous loci, supporting the hypothesis that these metabolic genes act as drivers within the conserved CNA amplification regions. Taken together, these results demonstrate that metabolic stress acts as a selective pressure underlying the recurrent CNAs observed in human tumors, and further cast genomic instability as an enabling event in tumorigenesis and metabolic evolution.
format Online
Article
Text
id pubmed-5327725
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-53277252017-03-01 Recurrent patterns of DNA copy number alterations in tumors reflect metabolic selection pressures Graham, Nicholas A Minasyan, Aspram Lomova, Anastasia Cass, Ashley Balanis, Nikolas G Friedman, Michael Chan, Shawna Zhao, Sophie Delgado, Adrian Go, James Beck, Lillie Hurtz, Christian Ng, Carina Qiao, Rong ten Hoeve, Johanna Palaskas, Nicolaos Wu, Hong Müschen, Markus Multani, Asha S Port, Elisa Larson, Steven M Schultz, Nikolaus Braas, Daniel Christofk, Heather R Mellinghoff, Ingo K Graeber, Thomas G Mol Syst Biol Articles Copy number alteration (CNA) profiling of human tumors has revealed recurrent patterns of DNA amplifications and deletions across diverse cancer types. These patterns are suggestive of conserved selection pressures during tumor evolution but cannot be fully explained by known oncogenes and tumor suppressor genes. Using a pan‐cancer analysis of CNA data from patient tumors and experimental systems, here we show that principal component analysis‐defined CNA signatures are predictive of glycolytic phenotypes, including (18)F‐fluorodeoxy‐glucose (FDG) avidity of patient tumors, and increased proliferation. The primary CNA signature is enriched for p53 mutations and is associated with glycolysis through coordinate amplification of glycolytic genes and other cancer‐linked metabolic enzymes. A pan‐cancer and cross‐species comparison of CNAs highlighted 26 consistently altered DNA regions, containing 11 enzymes in the glycolysis pathway in addition to known cancer‐driving genes. Furthermore, exogenous expression of hexokinase and enolase enzymes in an experimental immortalization system altered the subsequent copy number status of the corresponding endogenous loci, supporting the hypothesis that these metabolic genes act as drivers within the conserved CNA amplification regions. Taken together, these results demonstrate that metabolic stress acts as a selective pressure underlying the recurrent CNAs observed in human tumors, and further cast genomic instability as an enabling event in tumorigenesis and metabolic evolution. John Wiley and Sons Inc. 2017-02-15 /pmc/articles/PMC5327725/ /pubmed/28202506 http://dx.doi.org/10.15252/msb.20167159 Text en © 2017 The Authors. Published under the terms of the CC BY 4.0 license This is an open access article under the terms of the Creative Commons Attribution 4.0 (http://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Articles
Graham, Nicholas A
Minasyan, Aspram
Lomova, Anastasia
Cass, Ashley
Balanis, Nikolas G
Friedman, Michael
Chan, Shawna
Zhao, Sophie
Delgado, Adrian
Go, James
Beck, Lillie
Hurtz, Christian
Ng, Carina
Qiao, Rong
ten Hoeve, Johanna
Palaskas, Nicolaos
Wu, Hong
Müschen, Markus
Multani, Asha S
Port, Elisa
Larson, Steven M
Schultz, Nikolaus
Braas, Daniel
Christofk, Heather R
Mellinghoff, Ingo K
Graeber, Thomas G
Recurrent patterns of DNA copy number alterations in tumors reflect metabolic selection pressures
title Recurrent patterns of DNA copy number alterations in tumors reflect metabolic selection pressures
title_full Recurrent patterns of DNA copy number alterations in tumors reflect metabolic selection pressures
title_fullStr Recurrent patterns of DNA copy number alterations in tumors reflect metabolic selection pressures
title_full_unstemmed Recurrent patterns of DNA copy number alterations in tumors reflect metabolic selection pressures
title_short Recurrent patterns of DNA copy number alterations in tumors reflect metabolic selection pressures
title_sort recurrent patterns of dna copy number alterations in tumors reflect metabolic selection pressures
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5327725/
https://www.ncbi.nlm.nih.gov/pubmed/28202506
http://dx.doi.org/10.15252/msb.20167159
work_keys_str_mv AT grahamnicholasa recurrentpatternsofdnacopynumberalterationsintumorsreflectmetabolicselectionpressures
AT minasyanaspram recurrentpatternsofdnacopynumberalterationsintumorsreflectmetabolicselectionpressures
AT lomovaanastasia recurrentpatternsofdnacopynumberalterationsintumorsreflectmetabolicselectionpressures
AT cassashley recurrentpatternsofdnacopynumberalterationsintumorsreflectmetabolicselectionpressures
AT balanisnikolasg recurrentpatternsofdnacopynumberalterationsintumorsreflectmetabolicselectionpressures
AT friedmanmichael recurrentpatternsofdnacopynumberalterationsintumorsreflectmetabolicselectionpressures
AT chanshawna recurrentpatternsofdnacopynumberalterationsintumorsreflectmetabolicselectionpressures
AT zhaosophie recurrentpatternsofdnacopynumberalterationsintumorsreflectmetabolicselectionpressures
AT delgadoadrian recurrentpatternsofdnacopynumberalterationsintumorsreflectmetabolicselectionpressures
AT gojames recurrentpatternsofdnacopynumberalterationsintumorsreflectmetabolicselectionpressures
AT becklillie recurrentpatternsofdnacopynumberalterationsintumorsreflectmetabolicselectionpressures
AT hurtzchristian recurrentpatternsofdnacopynumberalterationsintumorsreflectmetabolicselectionpressures
AT ngcarina recurrentpatternsofdnacopynumberalterationsintumorsreflectmetabolicselectionpressures
AT qiaorong recurrentpatternsofdnacopynumberalterationsintumorsreflectmetabolicselectionpressures
AT tenhoevejohanna recurrentpatternsofdnacopynumberalterationsintumorsreflectmetabolicselectionpressures
AT palaskasnicolaos recurrentpatternsofdnacopynumberalterationsintumorsreflectmetabolicselectionpressures
AT wuhong recurrentpatternsofdnacopynumberalterationsintumorsreflectmetabolicselectionpressures
AT muschenmarkus recurrentpatternsofdnacopynumberalterationsintumorsreflectmetabolicselectionpressures
AT multaniashas recurrentpatternsofdnacopynumberalterationsintumorsreflectmetabolicselectionpressures
AT portelisa recurrentpatternsofdnacopynumberalterationsintumorsreflectmetabolicselectionpressures
AT larsonstevenm recurrentpatternsofdnacopynumberalterationsintumorsreflectmetabolicselectionpressures
AT schultznikolaus recurrentpatternsofdnacopynumberalterationsintumorsreflectmetabolicselectionpressures
AT braasdaniel recurrentpatternsofdnacopynumberalterationsintumorsreflectmetabolicselectionpressures
AT christofkheatherr recurrentpatternsofdnacopynumberalterationsintumorsreflectmetabolicselectionpressures
AT mellinghoffingok recurrentpatternsofdnacopynumberalterationsintumorsreflectmetabolicselectionpressures
AT graeberthomasg recurrentpatternsofdnacopynumberalterationsintumorsreflectmetabolicselectionpressures