Cargando…
Recurrent patterns of DNA copy number alterations in tumors reflect metabolic selection pressures
Copy number alteration (CNA) profiling of human tumors has revealed recurrent patterns of DNA amplifications and deletions across diverse cancer types. These patterns are suggestive of conserved selection pressures during tumor evolution but cannot be fully explained by known oncogenes and tumor sup...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5327725/ https://www.ncbi.nlm.nih.gov/pubmed/28202506 http://dx.doi.org/10.15252/msb.20167159 |
_version_ | 1782510794097819648 |
---|---|
author | Graham, Nicholas A Minasyan, Aspram Lomova, Anastasia Cass, Ashley Balanis, Nikolas G Friedman, Michael Chan, Shawna Zhao, Sophie Delgado, Adrian Go, James Beck, Lillie Hurtz, Christian Ng, Carina Qiao, Rong ten Hoeve, Johanna Palaskas, Nicolaos Wu, Hong Müschen, Markus Multani, Asha S Port, Elisa Larson, Steven M Schultz, Nikolaus Braas, Daniel Christofk, Heather R Mellinghoff, Ingo K Graeber, Thomas G |
author_facet | Graham, Nicholas A Minasyan, Aspram Lomova, Anastasia Cass, Ashley Balanis, Nikolas G Friedman, Michael Chan, Shawna Zhao, Sophie Delgado, Adrian Go, James Beck, Lillie Hurtz, Christian Ng, Carina Qiao, Rong ten Hoeve, Johanna Palaskas, Nicolaos Wu, Hong Müschen, Markus Multani, Asha S Port, Elisa Larson, Steven M Schultz, Nikolaus Braas, Daniel Christofk, Heather R Mellinghoff, Ingo K Graeber, Thomas G |
author_sort | Graham, Nicholas A |
collection | PubMed |
description | Copy number alteration (CNA) profiling of human tumors has revealed recurrent patterns of DNA amplifications and deletions across diverse cancer types. These patterns are suggestive of conserved selection pressures during tumor evolution but cannot be fully explained by known oncogenes and tumor suppressor genes. Using a pan‐cancer analysis of CNA data from patient tumors and experimental systems, here we show that principal component analysis‐defined CNA signatures are predictive of glycolytic phenotypes, including (18)F‐fluorodeoxy‐glucose (FDG) avidity of patient tumors, and increased proliferation. The primary CNA signature is enriched for p53 mutations and is associated with glycolysis through coordinate amplification of glycolytic genes and other cancer‐linked metabolic enzymes. A pan‐cancer and cross‐species comparison of CNAs highlighted 26 consistently altered DNA regions, containing 11 enzymes in the glycolysis pathway in addition to known cancer‐driving genes. Furthermore, exogenous expression of hexokinase and enolase enzymes in an experimental immortalization system altered the subsequent copy number status of the corresponding endogenous loci, supporting the hypothesis that these metabolic genes act as drivers within the conserved CNA amplification regions. Taken together, these results demonstrate that metabolic stress acts as a selective pressure underlying the recurrent CNAs observed in human tumors, and further cast genomic instability as an enabling event in tumorigenesis and metabolic evolution. |
format | Online Article Text |
id | pubmed-5327725 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-53277252017-03-01 Recurrent patterns of DNA copy number alterations in tumors reflect metabolic selection pressures Graham, Nicholas A Minasyan, Aspram Lomova, Anastasia Cass, Ashley Balanis, Nikolas G Friedman, Michael Chan, Shawna Zhao, Sophie Delgado, Adrian Go, James Beck, Lillie Hurtz, Christian Ng, Carina Qiao, Rong ten Hoeve, Johanna Palaskas, Nicolaos Wu, Hong Müschen, Markus Multani, Asha S Port, Elisa Larson, Steven M Schultz, Nikolaus Braas, Daniel Christofk, Heather R Mellinghoff, Ingo K Graeber, Thomas G Mol Syst Biol Articles Copy number alteration (CNA) profiling of human tumors has revealed recurrent patterns of DNA amplifications and deletions across diverse cancer types. These patterns are suggestive of conserved selection pressures during tumor evolution but cannot be fully explained by known oncogenes and tumor suppressor genes. Using a pan‐cancer analysis of CNA data from patient tumors and experimental systems, here we show that principal component analysis‐defined CNA signatures are predictive of glycolytic phenotypes, including (18)F‐fluorodeoxy‐glucose (FDG) avidity of patient tumors, and increased proliferation. The primary CNA signature is enriched for p53 mutations and is associated with glycolysis through coordinate amplification of glycolytic genes and other cancer‐linked metabolic enzymes. A pan‐cancer and cross‐species comparison of CNAs highlighted 26 consistently altered DNA regions, containing 11 enzymes in the glycolysis pathway in addition to known cancer‐driving genes. Furthermore, exogenous expression of hexokinase and enolase enzymes in an experimental immortalization system altered the subsequent copy number status of the corresponding endogenous loci, supporting the hypothesis that these metabolic genes act as drivers within the conserved CNA amplification regions. Taken together, these results demonstrate that metabolic stress acts as a selective pressure underlying the recurrent CNAs observed in human tumors, and further cast genomic instability as an enabling event in tumorigenesis and metabolic evolution. John Wiley and Sons Inc. 2017-02-15 /pmc/articles/PMC5327725/ /pubmed/28202506 http://dx.doi.org/10.15252/msb.20167159 Text en © 2017 The Authors. Published under the terms of the CC BY 4.0 license This is an open access article under the terms of the Creative Commons Attribution 4.0 (http://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Articles Graham, Nicholas A Minasyan, Aspram Lomova, Anastasia Cass, Ashley Balanis, Nikolas G Friedman, Michael Chan, Shawna Zhao, Sophie Delgado, Adrian Go, James Beck, Lillie Hurtz, Christian Ng, Carina Qiao, Rong ten Hoeve, Johanna Palaskas, Nicolaos Wu, Hong Müschen, Markus Multani, Asha S Port, Elisa Larson, Steven M Schultz, Nikolaus Braas, Daniel Christofk, Heather R Mellinghoff, Ingo K Graeber, Thomas G Recurrent patterns of DNA copy number alterations in tumors reflect metabolic selection pressures |
title | Recurrent patterns of DNA copy number alterations in tumors reflect metabolic selection pressures |
title_full | Recurrent patterns of DNA copy number alterations in tumors reflect metabolic selection pressures |
title_fullStr | Recurrent patterns of DNA copy number alterations in tumors reflect metabolic selection pressures |
title_full_unstemmed | Recurrent patterns of DNA copy number alterations in tumors reflect metabolic selection pressures |
title_short | Recurrent patterns of DNA copy number alterations in tumors reflect metabolic selection pressures |
title_sort | recurrent patterns of dna copy number alterations in tumors reflect metabolic selection pressures |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5327725/ https://www.ncbi.nlm.nih.gov/pubmed/28202506 http://dx.doi.org/10.15252/msb.20167159 |
work_keys_str_mv | AT grahamnicholasa recurrentpatternsofdnacopynumberalterationsintumorsreflectmetabolicselectionpressures AT minasyanaspram recurrentpatternsofdnacopynumberalterationsintumorsreflectmetabolicselectionpressures AT lomovaanastasia recurrentpatternsofdnacopynumberalterationsintumorsreflectmetabolicselectionpressures AT cassashley recurrentpatternsofdnacopynumberalterationsintumorsreflectmetabolicselectionpressures AT balanisnikolasg recurrentpatternsofdnacopynumberalterationsintumorsreflectmetabolicselectionpressures AT friedmanmichael recurrentpatternsofdnacopynumberalterationsintumorsreflectmetabolicselectionpressures AT chanshawna recurrentpatternsofdnacopynumberalterationsintumorsreflectmetabolicselectionpressures AT zhaosophie recurrentpatternsofdnacopynumberalterationsintumorsreflectmetabolicselectionpressures AT delgadoadrian recurrentpatternsofdnacopynumberalterationsintumorsreflectmetabolicselectionpressures AT gojames recurrentpatternsofdnacopynumberalterationsintumorsreflectmetabolicselectionpressures AT becklillie recurrentpatternsofdnacopynumberalterationsintumorsreflectmetabolicselectionpressures AT hurtzchristian recurrentpatternsofdnacopynumberalterationsintumorsreflectmetabolicselectionpressures AT ngcarina recurrentpatternsofdnacopynumberalterationsintumorsreflectmetabolicselectionpressures AT qiaorong recurrentpatternsofdnacopynumberalterationsintumorsreflectmetabolicselectionpressures AT tenhoevejohanna recurrentpatternsofdnacopynumberalterationsintumorsreflectmetabolicselectionpressures AT palaskasnicolaos recurrentpatternsofdnacopynumberalterationsintumorsreflectmetabolicselectionpressures AT wuhong recurrentpatternsofdnacopynumberalterationsintumorsreflectmetabolicselectionpressures AT muschenmarkus recurrentpatternsofdnacopynumberalterationsintumorsreflectmetabolicselectionpressures AT multaniashas recurrentpatternsofdnacopynumberalterationsintumorsreflectmetabolicselectionpressures AT portelisa recurrentpatternsofdnacopynumberalterationsintumorsreflectmetabolicselectionpressures AT larsonstevenm recurrentpatternsofdnacopynumberalterationsintumorsreflectmetabolicselectionpressures AT schultznikolaus recurrentpatternsofdnacopynumberalterationsintumorsreflectmetabolicselectionpressures AT braasdaniel recurrentpatternsofdnacopynumberalterationsintumorsreflectmetabolicselectionpressures AT christofkheatherr recurrentpatternsofdnacopynumberalterationsintumorsreflectmetabolicselectionpressures AT mellinghoffingok recurrentpatternsofdnacopynumberalterationsintumorsreflectmetabolicselectionpressures AT graeberthomasg recurrentpatternsofdnacopynumberalterationsintumorsreflectmetabolicselectionpressures |