Cargando…
Nano Random Forests to mine protein complexes and their relationships in quantitative proteomics data
Ever-increasing numbers of quantitative proteomics data sets constitute an underexploited resource for investigating protein function. Multiprotein complexes often follow consistent trends in these experiments, which could provide insights about their biology. Yet, as more experiments are considered...
Autores principales: | Montaño-Gutierrez, Luis F., Ohta, Shinya, Kustatscher, Georg, Earnshaw, William C., Rappsilber, Juri |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The American Society for Cell Biology
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5328625/ https://www.ncbi.nlm.nih.gov/pubmed/28057767 http://dx.doi.org/10.1091/mbc.E16-06-0370 |
Ejemplares similares
-
Proteomics Analysis with a Nano Random Forest Approach Reveals Novel Functional Interactions Regulated by SMC Complexes on Mitotic Chromosomes
por: Ohta, Shinya, et al.
Publicado: (2016) -
Multiclassifier combinatorial proteomics of organelle shadows at the example of mitochondria in chromatin data
por: Kustatscher, Georg, et al.
Publicado: (2016) -
Epigenetic Variability Confounds Transcriptome but Not Proteome Profiling for Coexpression-based Gene Function Prediction
por: Grabowski, Piotr, et al.
Publicado: (2018) -
Mapping the invisible chromatin transactions of prophase chromosome remodeling
por: Samejima, Itaru, et al.
Publicado: (2022) -
Compositional Dynamics: Defining the Fuzzy Cell
por: Kustatscher, Georg, et al.
Publicado: (2016)