Cargando…

Postural effects on cerebral blood flow and autoregulation

Cerebral autoregulation (CA) is thought to maintain relatively constant cerebral blood flow (CBF) across normal blood pressures. To determine if postural changes alter CA, we measured cerebral blood flow velocity (CBFv) in the middle cerebral arteries, mean arterial blood pressure (MABP), cardiac ou...

Descripción completa

Detalles Bibliográficos
Autores principales: Garrett, Zachary K., Pearson, James, Subudhi, Andrew W.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5328778/
https://www.ncbi.nlm.nih.gov/pubmed/28242827
http://dx.doi.org/10.14814/phy2.13150
Descripción
Sumario:Cerebral autoregulation (CA) is thought to maintain relatively constant cerebral blood flow (CBF) across normal blood pressures. To determine if postural changes alter CA, we measured cerebral blood flow velocity (CBFv) in the middle cerebral arteries, mean arterial blood pressure (MABP), cardiac output (Q), and end‐tidal carbon dioxide (PETCO (2)) in 18 healthy individuals (11 female and seven male; 26 ± 9 years) during repeated periods of supine and seated rest. Multiple regression was used to evaluate the influence of PETCO (2), MABP, Q, and hydrostatic pressure on CBFv. Static CA was assessed by evaluating absolute changes in steady‐state CBFv. Dynamic CA was assessed by transfer function analysis of the CBFv response to spontaneous oscillations in MABP. In the seated versus supine posture, MABP (67.2 ± 7.2 vs. 84.2 ± 12.1 mmHg; P < 0.001), CBFv (55.2 ± 9.1 vs. 63.6 ± 10.6 cm/sec; P < 0.001) and PETCO (2) (29.1 ± 2.6 vs. 30.9 ± 2.3 mmHg; P < 0.001) were reduced. Changes in CBFv were not explained by variance in PETCO (2), MABP, Q, or hydrostatic pressure. A reduction in MABP to CBFv transfer function gain while seated (P < 0.01) was explained by changes in the power spectrum of MABP, not CBFv. Our findings suggest that changes in steady‐state cerebral hemodynamics between postures do not appear to have a large functional consequence on the dynamic regulation of CBF.