Cargando…
Effects of functional decoupling of a leg in a model of stick insect walking incorporating three ipsilateral legs
Legged locomotion is a fundamental form of activity of insects during which the legs perform coordinated movements. Sensory signals conveying position, velocity and load of a leg are sent between the thoracic ganglia where the local control networks of the leg muscles are situated. They affect the a...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5328780/ https://www.ncbi.nlm.nih.gov/pubmed/28242829 http://dx.doi.org/10.14814/phy2.13154 |
Sumario: | Legged locomotion is a fundamental form of activity of insects during which the legs perform coordinated movements. Sensory signals conveying position, velocity and load of a leg are sent between the thoracic ganglia where the local control networks of the leg muscles are situated. They affect the actual state of the local control networks, hence the stepping of the legs. Sensory coordination in stepping has been intensively studied but important details of its neuronal mechanisms are still unclear. One possibility to tackle this problem is to study what happens to the coordination if a leg is, reversibly or irreversibly, deprived of its normal function. There are numerous behavioral studies on this topic but they could not fully uncover the underlying neuronal mechanisms. Another promising approach to make further progress here can be the use of appropriate models that help elucidate those coordinating mechanisms. We constructed a model of three ipsilateral legs of a stick insect that can mimic coordinated stepping of these legs. We used this model to investigate the possible effects of decoupling a leg. We found that decoupling of the front or the hind leg did not disrupt the coordinated walking of the two remaining legs. However, decoupling of the middle leg yielded mixed results. Both disruption and continuation of coordinated stepping of the front and hind leg occurred. These results agree with the majority of corresponding experimental findings. The model suggests a number of possible mechanisms of decoupling that might bring about the changes. |
---|