Cargando…
RNA-based gene circuits for cell regulation
A major goal of synthetic biology is to control cell behavior. RNA-mediated genetic switches (RNA switches) are devices that serve this purpose, as they can control gene expressions in response to input signals. In general, RNA switches consist of two domains: an aptamer domain, which binds to an in...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Japan Academy
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5328788/ https://www.ncbi.nlm.nih.gov/pubmed/27840389 http://dx.doi.org/10.2183/pjab.92.412 |
_version_ | 1782510942536335360 |
---|---|
author | KARAGIANNIS, Peter FUJITA, Yoshihiko SAITO, Hirohide |
author_facet | KARAGIANNIS, Peter FUJITA, Yoshihiko SAITO, Hirohide |
author_sort | KARAGIANNIS, Peter |
collection | PubMed |
description | A major goal of synthetic biology is to control cell behavior. RNA-mediated genetic switches (RNA switches) are devices that serve this purpose, as they can control gene expressions in response to input signals. In general, RNA switches consist of two domains: an aptamer domain, which binds to an input molecule, and an actuator domain, which controls the gene expression. An input binding to the aptamer can cause the actuator to alter the RNA structure, thus changing access to translation machinery. The assembly of multiple RNA switches has led to complex gene circuits for cell therapies, including the selective killing of pathological cells and purification of cell populations. The inclusion of RNA binding proteins, such as L7Ae, increases the repertoire and precision of the circuit. In this short review, we discuss synthetic RNA switches for gene regulation and their potential therapeutic applications. |
format | Online Article Text |
id | pubmed-5328788 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | The Japan Academy |
record_format | MEDLINE/PubMed |
spelling | pubmed-53287882017-03-21 RNA-based gene circuits for cell regulation KARAGIANNIS, Peter FUJITA, Yoshihiko SAITO, Hirohide Proc Jpn Acad Ser B Phys Biol Sci Review A major goal of synthetic biology is to control cell behavior. RNA-mediated genetic switches (RNA switches) are devices that serve this purpose, as they can control gene expressions in response to input signals. In general, RNA switches consist of two domains: an aptamer domain, which binds to an input molecule, and an actuator domain, which controls the gene expression. An input binding to the aptamer can cause the actuator to alter the RNA structure, thus changing access to translation machinery. The assembly of multiple RNA switches has led to complex gene circuits for cell therapies, including the selective killing of pathological cells and purification of cell populations. The inclusion of RNA binding proteins, such as L7Ae, increases the repertoire and precision of the circuit. In this short review, we discuss synthetic RNA switches for gene regulation and their potential therapeutic applications. The Japan Academy 2016-11-11 /pmc/articles/PMC5328788/ /pubmed/27840389 http://dx.doi.org/10.2183/pjab.92.412 Text en © 2016 The Japan Academy This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Review KARAGIANNIS, Peter FUJITA, Yoshihiko SAITO, Hirohide RNA-based gene circuits for cell regulation |
title | RNA-based gene circuits for cell regulation |
title_full | RNA-based gene circuits for cell regulation |
title_fullStr | RNA-based gene circuits for cell regulation |
title_full_unstemmed | RNA-based gene circuits for cell regulation |
title_short | RNA-based gene circuits for cell regulation |
title_sort | rna-based gene circuits for cell regulation |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5328788/ https://www.ncbi.nlm.nih.gov/pubmed/27840389 http://dx.doi.org/10.2183/pjab.92.412 |
work_keys_str_mv | AT karagiannispeter rnabasedgenecircuitsforcellregulation AT fujitayoshihiko rnabasedgenecircuitsforcellregulation AT saitohirohide rnabasedgenecircuitsforcellregulation |