Cargando…

Computational Approaches to Facilitate Epitope-Based HLA Matching in Solid Organ Transplantation

Epitope-based HLA matching has been emerged over the last few years as an improved method for HLA matching in solid organ transplantation. The epitope-based matching concept has been incorporated in both the PIRCHE-II and the HLAMatchmaker algorithm to find the most suitable donor for a recipient. F...

Descripción completa

Detalles Bibliográficos
Autores principales: Geneugelijk, Kirsten, Wissing, Jeroen, Koppenaal, Dirk, Niemann, Matthias, Spierings, Eric
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi Publishing Corporation 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5329668/
https://www.ncbi.nlm.nih.gov/pubmed/28286782
http://dx.doi.org/10.1155/2017/9130879
Descripción
Sumario:Epitope-based HLA matching has been emerged over the last few years as an improved method for HLA matching in solid organ transplantation. The epitope-based matching concept has been incorporated in both the PIRCHE-II and the HLAMatchmaker algorithm to find the most suitable donor for a recipient. For these algorithms, high-resolution HLA genotype data of both donor and recipient is required. Since high-resolution HLA genotype data is often not available, we developed a computational method which allows epitope-based HLA matching from serological split level HLA typing relying on HLA haplotype frequencies. To validate this method, we simulated a donor-recipient population for which PIRCHE-II and eplet values were calculated when using both high-resolution HLA genotype data and serological split level HLA typing. The majority of the serological split level HLA-determined ln(PIRCHE-II)/ln(eplet) values did not or only slightly deviate from the reference group of high-resolution HLA-determined ln(PIRCHE-II)/ln(eplet) values. This deviation was slightly increased when HLA-C or HLA-DQ was omitted from the input and was substantially decreased when using two-field resolution HLA genotype data of the recipient and serological split level HLA typing of the donor. Thus, our data suggest that our computational approach is a powerful tool to estimate PIRCHE-II/eplet values when high-resolution HLA genotype data is not available.