Cargando…
Modern trends in animal venom research - omics and nanomaterials
Animal venom research is a specialized investigation field, in which a number of different methods are used and this array is constantly expanding. Thus, recently emerged omics and nanotechnologies have already been successfully applied to venom research. Animal venoms have been studied for quite a...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Baishideng Publishing Group Inc
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5329713/ https://www.ncbi.nlm.nih.gov/pubmed/28289514 http://dx.doi.org/10.4331/wjbc.v8.i1.4 |
_version_ | 1782511109451808768 |
---|---|
author | Utkin, Yuri N |
author_facet | Utkin, Yuri N |
author_sort | Utkin, Yuri N |
collection | PubMed |
description | Animal venom research is a specialized investigation field, in which a number of different methods are used and this array is constantly expanding. Thus, recently emerged omics and nanotechnologies have already been successfully applied to venom research. Animal venoms have been studied for quite a long time. The traditional reductionist approach has been to isolate individual toxins and then study their structure and function. Unfortunately, the characterization of the venom as a whole system and its multiple effects on an entire organism were not possible until recent times. The development of new methods in mass spectrometry and sequencing have allowed such characterizations of venom, encompassing the identification of new toxins present in venoms at extremely low concentrations to changes in metabolism of prey organisms after envenomation. In particular, this type of comprehensive research has become possible due to the development of the various omics technologies: Proteomics, peptidomics, transcriptomics, genomics and metabolomics. As in other research fields, these omics technologies ushered in a revolution for venom studies, which is now entering the era of big data. Nanotechnology is a very new branch of technology and developing at an extremely rapid pace. It has found application in many spheres and has not bypassed the venom studies. Nanomaterials are quite promising in medicine, and most studies combining venoms and nanomaterials are dedicated to medical applications. Conjugates of nanoparticles with venom components have been proposed for use as drugs or diagnostics. For example, nanoparticles conjugated with chlorotoxin - a toxin in scorpion venom, which has been shown to bind specifically to glioma cells - are considered as potential glioma-targeted drugs, and conjugates of neurotoxins with fluorescent semiconductor nanoparticles or quantum dots may be used to detect endogenous targets expressed in live cells. The data on application of omics and nanotechnologies in venom research are systematized concisely in this paper. |
format | Online Article Text |
id | pubmed-5329713 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Baishideng Publishing Group Inc |
record_format | MEDLINE/PubMed |
spelling | pubmed-53297132017-03-13 Modern trends in animal venom research - omics and nanomaterials Utkin, Yuri N World J Biol Chem Editorial Animal venom research is a specialized investigation field, in which a number of different methods are used and this array is constantly expanding. Thus, recently emerged omics and nanotechnologies have already been successfully applied to venom research. Animal venoms have been studied for quite a long time. The traditional reductionist approach has been to isolate individual toxins and then study their structure and function. Unfortunately, the characterization of the venom as a whole system and its multiple effects on an entire organism were not possible until recent times. The development of new methods in mass spectrometry and sequencing have allowed such characterizations of venom, encompassing the identification of new toxins present in venoms at extremely low concentrations to changes in metabolism of prey organisms after envenomation. In particular, this type of comprehensive research has become possible due to the development of the various omics technologies: Proteomics, peptidomics, transcriptomics, genomics and metabolomics. As in other research fields, these omics technologies ushered in a revolution for venom studies, which is now entering the era of big data. Nanotechnology is a very new branch of technology and developing at an extremely rapid pace. It has found application in many spheres and has not bypassed the venom studies. Nanomaterials are quite promising in medicine, and most studies combining venoms and nanomaterials are dedicated to medical applications. Conjugates of nanoparticles with venom components have been proposed for use as drugs or diagnostics. For example, nanoparticles conjugated with chlorotoxin - a toxin in scorpion venom, which has been shown to bind specifically to glioma cells - are considered as potential glioma-targeted drugs, and conjugates of neurotoxins with fluorescent semiconductor nanoparticles or quantum dots may be used to detect endogenous targets expressed in live cells. The data on application of omics and nanotechnologies in venom research are systematized concisely in this paper. Baishideng Publishing Group Inc 2017-02-26 2017-02-26 /pmc/articles/PMC5329713/ /pubmed/28289514 http://dx.doi.org/10.4331/wjbc.v8.i1.4 Text en ©The Author(s) 2017. Published by Baishideng Publishing Group Inc. All rights reserved. http://creativecommons.org/licenses/by-nc/4.0/ This article is an open-access article which was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. |
spellingShingle | Editorial Utkin, Yuri N Modern trends in animal venom research - omics and nanomaterials |
title | Modern trends in animal venom research - omics and nanomaterials |
title_full | Modern trends in animal venom research - omics and nanomaterials |
title_fullStr | Modern trends in animal venom research - omics and nanomaterials |
title_full_unstemmed | Modern trends in animal venom research - omics and nanomaterials |
title_short | Modern trends in animal venom research - omics and nanomaterials |
title_sort | modern trends in animal venom research - omics and nanomaterials |
topic | Editorial |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5329713/ https://www.ncbi.nlm.nih.gov/pubmed/28289514 http://dx.doi.org/10.4331/wjbc.v8.i1.4 |
work_keys_str_mv | AT utkinyurin moderntrendsinanimalvenomresearchomicsandnanomaterials |