Cargando…
Drug voyager: a computational platform for exploring unintended drug action
BACKGROUND: The dominant paradigm in understanding drug action focuses on the intended therapeutic effects and frequent adverse reactions. However, this approach may limit opportunities to grasp unintended drug actions, which can open up channels to repurpose existing drugs and identify rare adverse...
Autores principales: | Oh, Min, Ahn, Jaegyoon, Lee, Taekeon, Jang, Giup, Park, Chihyun, Yoon, Youngmi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5329936/ https://www.ncbi.nlm.nih.gov/pubmed/28241745 http://dx.doi.org/10.1186/s12859-017-1558-3 |
Ejemplares similares
-
A Network-Based Classification Model for Deriving Novel Drug-Disease Associations and Assessing Their Molecular Actions
por: Oh, Min, et al.
Publicado: (2014) -
A Multi-Sample Based Method for Identifying Common CNVs in Normal Human Genomic Structure Using High-Resolution aCGH Data
por: Park, Chihyun, et al.
Publicado: (2011) -
Novel deep learning model for more accurate prediction of drug-drug interaction effects
por: Lee, Geonhee, et al.
Publicado: (2019) -
Drug repositioning using drug-disease vectors based on an integrated network
por: Lee, Taekeon, et al.
Publicado: (2018) -
Integrative Gene Network Construction to Analyze Cancer Recurrence Using Semi-Supervised Learning
por: Park, Chihyun, et al.
Publicado: (2014)