Cargando…
Fitting power-laws in empirical data with estimators that work for all exponents
Most standard methods based on maximum likelihood (ML) estimates of power-law exponents can only be reliably used to identify exponents smaller than minus one. The argument that power laws are otherwise not normalizable, depends on the underlying sample space the data is drawn from, and is true only...
Autores principales: | Hanel, Rudolf, Corominas-Murtra, Bernat, Liu, Bo, Thurner, Stefan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5330461/ https://www.ncbi.nlm.nih.gov/pubmed/28245249 http://dx.doi.org/10.1371/journal.pone.0170920 |
Ejemplares similares
-
Correction: Fitting power-laws in empirical data with estimators that work for all exponents
por: Hanel, Rudolf, et al.
Publicado: (2018) -
Sample space reducing cascading processes produce the full spectrum of scaling exponents
por: Corominas-Murtra, Bernat, et al.
Publicado: (2017) -
How driving rates determine the statistics of driven non-equilibrium systems with stationary distributions
por: Corominas-Murtra, Bernat, et al.
Publicado: (2018) -
The Typical Set and Entropy in Stochastic Systems with Arbitrary Phase Space Growth
por: Hanel, Rudolf, et al.
Publicado: (2023) -
Detection of the Elite Structure in a Virtual Multiplex Social System by Means of a Generalised K-Core
por: Corominas-Murtra, Bernat, et al.
Publicado: (2014)