Cargando…

Computational identification of the selenocysteine tRNA (tRNA(Sec)) in genomes

Selenocysteine (Sec) is known as the 21st amino acid, a cysteine analogue with selenium replacing sulphur. Sec is inserted co-translationally in a small fraction of proteins called selenoproteins. In selenoprotein genes, the Sec specific tRNA (tRNA(Sec)) drives the recoding of highly specific UGA co...

Descripción completa

Detalles Bibliográficos
Autores principales: Santesmasses, Didac, Mariotti, Marco, Guigó, Roderic
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5330540/
https://www.ncbi.nlm.nih.gov/pubmed/28192430
http://dx.doi.org/10.1371/journal.pcbi.1005383
Descripción
Sumario:Selenocysteine (Sec) is known as the 21st amino acid, a cysteine analogue with selenium replacing sulphur. Sec is inserted co-translationally in a small fraction of proteins called selenoproteins. In selenoprotein genes, the Sec specific tRNA (tRNA(Sec)) drives the recoding of highly specific UGA codons from stop signals to Sec. Although found in organisms from the three domains of life, Sec is not universal. Many species are completely devoid of selenoprotein genes and lack the ability to synthesize Sec. Since tRNA(Sec) is a key component in selenoprotein biosynthesis, its efficient identification in genomes is instrumental to characterize the utilization of Sec across lineages. Available tRNA prediction methods fail to accurately predict tRNA(Sec), due to its unusual structural fold. Here, we present Secmarker, a method based on manually curated covariance models capturing the specific tRNA(Sec) structure in archaea, bacteria and eukaryotes. We exploited the non-universality of Sec to build a proper benchmark set for tRNA(Sec) predictions, which is not possible for the predictions of other tRNAs. We show that Secmarker greatly improves the accuracy of previously existing methods constituting a valuable tool to identify tRNA(Sec) genes, and to efficiently determine whether a genome contains selenoproteins. We used Secmarker to analyze a large set of fully sequenced genomes, and the results revealed new insights in the biology of tRNA(Sec), led to the discovery of a novel bacterial selenoprotein family, and shed additional light on the phylogenetic distribution of selenoprotein containing genomes. Secmarker is freely accessible for download, or online analysis through a web server at http://secmarker.crg.cat.