Cargando…
Inhibitory peptidergic modulation of C. elegans serotonin neurons is gated by T-type calcium channels
Serotonin is an evolutionarily ancient molecule that functions in generating and modulating many behavioral states. Although much is known about how serotonin acts on its cellular targets, how serotonin release is regulated in vivo remains poorly understood. In the nematode C. elegans, serotonin neu...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
eLife Sciences Publications, Ltd
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5330680/ https://www.ncbi.nlm.nih.gov/pubmed/28165324 http://dx.doi.org/10.7554/eLife.22771 |
_version_ | 1782511264048611328 |
---|---|
author | Zang, Kara E Ho, Elver Ringstad, Niels |
author_facet | Zang, Kara E Ho, Elver Ringstad, Niels |
author_sort | Zang, Kara E |
collection | PubMed |
description | Serotonin is an evolutionarily ancient molecule that functions in generating and modulating many behavioral states. Although much is known about how serotonin acts on its cellular targets, how serotonin release is regulated in vivo remains poorly understood. In the nematode C. elegans, serotonin neurons that drive female reproductive behavior are directly modulated by inhibitory neuropeptides. Here, we report the isolation of mutants in which inhibitory neuropeptides fail to properly modulate serotonin neurons and the behavior they mediate. The corresponding mutations affect the T-type calcium channel CCA-1 and symmetrically re-tune its voltage-dependencies of activation and inactivation towards more hyperpolarized potentials. This shift in voltage dependency strongly and specifically bypasses the behavioral and cell physiological effects of peptidergic inhibition on serotonin neurons. Our results indicate that T-type calcium channels are critical regulators of a C. elegans serotonergic circuit and demonstrate a mechanism in which T-type channels functionally gate inhibitory modulation in vivo. DOI: http://dx.doi.org/10.7554/eLife.22771.001 |
format | Online Article Text |
id | pubmed-5330680 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | eLife Sciences Publications, Ltd |
record_format | MEDLINE/PubMed |
spelling | pubmed-53306802017-03-02 Inhibitory peptidergic modulation of C. elegans serotonin neurons is gated by T-type calcium channels Zang, Kara E Ho, Elver Ringstad, Niels eLife Neuroscience Serotonin is an evolutionarily ancient molecule that functions in generating and modulating many behavioral states. Although much is known about how serotonin acts on its cellular targets, how serotonin release is regulated in vivo remains poorly understood. In the nematode C. elegans, serotonin neurons that drive female reproductive behavior are directly modulated by inhibitory neuropeptides. Here, we report the isolation of mutants in which inhibitory neuropeptides fail to properly modulate serotonin neurons and the behavior they mediate. The corresponding mutations affect the T-type calcium channel CCA-1 and symmetrically re-tune its voltage-dependencies of activation and inactivation towards more hyperpolarized potentials. This shift in voltage dependency strongly and specifically bypasses the behavioral and cell physiological effects of peptidergic inhibition on serotonin neurons. Our results indicate that T-type calcium channels are critical regulators of a C. elegans serotonergic circuit and demonstrate a mechanism in which T-type channels functionally gate inhibitory modulation in vivo. DOI: http://dx.doi.org/10.7554/eLife.22771.001 eLife Sciences Publications, Ltd 2017-02-06 /pmc/articles/PMC5330680/ /pubmed/28165324 http://dx.doi.org/10.7554/eLife.22771 Text en © 2017, Zang et al http://creativecommons.org/licenses/by/4.0/ This article is distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use and redistribution provided that the original author and source are credited. |
spellingShingle | Neuroscience Zang, Kara E Ho, Elver Ringstad, Niels Inhibitory peptidergic modulation of C. elegans serotonin neurons is gated by T-type calcium channels |
title | Inhibitory peptidergic modulation of C. elegans serotonin neurons is gated by T-type calcium channels |
title_full | Inhibitory peptidergic modulation of C. elegans serotonin neurons is gated by T-type calcium channels |
title_fullStr | Inhibitory peptidergic modulation of C. elegans serotonin neurons is gated by T-type calcium channels |
title_full_unstemmed | Inhibitory peptidergic modulation of C. elegans serotonin neurons is gated by T-type calcium channels |
title_short | Inhibitory peptidergic modulation of C. elegans serotonin neurons is gated by T-type calcium channels |
title_sort | inhibitory peptidergic modulation of c. elegans serotonin neurons is gated by t-type calcium channels |
topic | Neuroscience |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5330680/ https://www.ncbi.nlm.nih.gov/pubmed/28165324 http://dx.doi.org/10.7554/eLife.22771 |
work_keys_str_mv | AT zangkarae inhibitorypeptidergicmodulationofcelegansserotoninneuronsisgatedbyttypecalciumchannels AT hoelver inhibitorypeptidergicmodulationofcelegansserotoninneuronsisgatedbyttypecalciumchannels AT ringstadniels inhibitorypeptidergicmodulationofcelegansserotoninneuronsisgatedbyttypecalciumchannels |