Cargando…
Characterizing cell subsets in heterogeneous tissues using marker enrichment modeling
Learning cell identity from single-cell data presently relies on human experts. Here, we present Marker Enrichment Modeling (MEM), an algorithm that objectively describes cells by quantifying contextual feature enrichment and reporting a human and machine-readable text label. MEM outperformed tradit...
Autores principales: | Diggins, K. E., Greenplate, A. R., Leelatian, N., Wogsland, C. E., Irish, J. M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5330853/ https://www.ncbi.nlm.nih.gov/pubmed/28135256 http://dx.doi.org/10.1038/nmeth.4149 |
Ejemplares similares
-
Unsupervised machine learning reveals risk stratifying glioblastoma tumor cells
por: Leelatian, Nalin, et al.
Publicado: (2020) -
In Vivo Autofluorescence Imaging of Tumor Heterogeneity in Response to Treatment
por: Shah, Amy T., et al.
Publicado: (2015) -
Sources of heterogeneity in human monocyte subsets
por: Appleby, Laura J., et al.
Publicado: (2013) -
Discovery of human cell selective effector molecules using single cell multiplexed activity metabolomics
por: Earl, David C., et al.
Publicado: (2018) -
Enrichment of specific suppressor T cells and characterization of their surface markers
Publicado: (1977)