Cargando…

Tracking motor units longitudinally across experimental sessions with high‐density surface electromyography

KEY POINTS: Classic motor unit (MU) recording and analysis methods do not allow the same MUs to be tracked across different experimental sessions, and therefore, there is limited experimental evidence on the adjustments in MU properties following training or during the progression of neuromuscular d...

Descripción completa

Detalles Bibliográficos
Autores principales: Martinez‐Valdes, E., Negro, F., Laine, C. M., Falla, D., Mayer, F., Farina, D.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5330923/
https://www.ncbi.nlm.nih.gov/pubmed/28032343
http://dx.doi.org/10.1113/JP273662
_version_ 1782511288812830720
author Martinez‐Valdes, E.
Negro, F.
Laine, C. M.
Falla, D.
Mayer, F.
Farina, D.
author_facet Martinez‐Valdes, E.
Negro, F.
Laine, C. M.
Falla, D.
Mayer, F.
Farina, D.
author_sort Martinez‐Valdes, E.
collection PubMed
description KEY POINTS: Classic motor unit (MU) recording and analysis methods do not allow the same MUs to be tracked across different experimental sessions, and therefore, there is limited experimental evidence on the adjustments in MU properties following training or during the progression of neuromuscular disorders. We propose a new processing method to track the same MUs across experimental sessions (separated by weeks) by using high‐density surface electromyography. The application of the proposed method in two experiments showed that individual MUs can be identified reliably in measurements separated by weeks and that changes in properties of the tracked MUs across experimental sessions can be identified with high sensitivity. These results indicate that the behaviour and properties of the same MUs can be monitored across multiple testing sessions. The proposed method opens new possibilities in the understanding of adjustments in motor unit properties due to training interventions or the progression of pathologies. ABSTRACT: A new method is proposed for tracking individual motor units (MUs) across multiple experimental sessions on different days. The technique is based on a novel decomposition approach for high‐density surface electromyography and was tested with two experimental studies for reliability and sensitivity. Experiment I (reliability): ten participants performed isometric knee extensions at 10, 30, 50 and 70% of their maximum voluntary contraction (MVC) force in three sessions, each separated by 1 week. Experiment II (sensitivity): seven participants performed 2 weeks of endurance training (cycling) and were tested pre–post intervention during isometric knee extensions at 10 and 30% MVC. The reliability (Experiment I) and sensitivity (Experiment II) of the measured MU properties were compared for the MUs tracked across sessions, with respect to all MUs identified in each session. In Experiment I, on average 38.3% and 40.1% of the identified MUs could be tracked across two sessions (1 and 2 weeks apart), for the vastus medialis and vastus lateralis, respectively. Moreover, the properties of the tracked MUs were more reliable across sessions than those of the full set of identified MUs (intra‐class correlation coefficients ranged between 0.63—0.99 and 0.39–0.95, respectively). In Experiment II, ∼40% of the MUs could be tracked before and after the training intervention and training‐induced changes in MU conduction velocity had an effect size of 2.1 (tracked MUs) and 1.5 (group of all identified motor units). These results show the possibility of monitoring MU properties longitudinally to document the effect of interventions or the progression of neuromuscular disorders.
format Online
Article
Text
id pubmed-5330923
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-53309232017-03-06 Tracking motor units longitudinally across experimental sessions with high‐density surface electromyography Martinez‐Valdes, E. Negro, F. Laine, C. M. Falla, D. Mayer, F. Farina, D. J Physiol Techniques for Physiology KEY POINTS: Classic motor unit (MU) recording and analysis methods do not allow the same MUs to be tracked across different experimental sessions, and therefore, there is limited experimental evidence on the adjustments in MU properties following training or during the progression of neuromuscular disorders. We propose a new processing method to track the same MUs across experimental sessions (separated by weeks) by using high‐density surface electromyography. The application of the proposed method in two experiments showed that individual MUs can be identified reliably in measurements separated by weeks and that changes in properties of the tracked MUs across experimental sessions can be identified with high sensitivity. These results indicate that the behaviour and properties of the same MUs can be monitored across multiple testing sessions. The proposed method opens new possibilities in the understanding of adjustments in motor unit properties due to training interventions or the progression of pathologies. ABSTRACT: A new method is proposed for tracking individual motor units (MUs) across multiple experimental sessions on different days. The technique is based on a novel decomposition approach for high‐density surface electromyography and was tested with two experimental studies for reliability and sensitivity. Experiment I (reliability): ten participants performed isometric knee extensions at 10, 30, 50 and 70% of their maximum voluntary contraction (MVC) force in three sessions, each separated by 1 week. Experiment II (sensitivity): seven participants performed 2 weeks of endurance training (cycling) and were tested pre–post intervention during isometric knee extensions at 10 and 30% MVC. The reliability (Experiment I) and sensitivity (Experiment II) of the measured MU properties were compared for the MUs tracked across sessions, with respect to all MUs identified in each session. In Experiment I, on average 38.3% and 40.1% of the identified MUs could be tracked across two sessions (1 and 2 weeks apart), for the vastus medialis and vastus lateralis, respectively. Moreover, the properties of the tracked MUs were more reliable across sessions than those of the full set of identified MUs (intra‐class correlation coefficients ranged between 0.63—0.99 and 0.39–0.95, respectively). In Experiment II, ∼40% of the MUs could be tracked before and after the training intervention and training‐induced changes in MU conduction velocity had an effect size of 2.1 (tracked MUs) and 1.5 (group of all identified motor units). These results show the possibility of monitoring MU properties longitudinally to document the effect of interventions or the progression of neuromuscular disorders. John Wiley and Sons Inc. 2017-02-28 2017-03-01 /pmc/articles/PMC5330923/ /pubmed/28032343 http://dx.doi.org/10.1113/JP273662 Text en © 2016 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society This is an open access article under the terms of the Creative Commons Attribution (http://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Techniques for Physiology
Martinez‐Valdes, E.
Negro, F.
Laine, C. M.
Falla, D.
Mayer, F.
Farina, D.
Tracking motor units longitudinally across experimental sessions with high‐density surface electromyography
title Tracking motor units longitudinally across experimental sessions with high‐density surface electromyography
title_full Tracking motor units longitudinally across experimental sessions with high‐density surface electromyography
title_fullStr Tracking motor units longitudinally across experimental sessions with high‐density surface electromyography
title_full_unstemmed Tracking motor units longitudinally across experimental sessions with high‐density surface electromyography
title_short Tracking motor units longitudinally across experimental sessions with high‐density surface electromyography
title_sort tracking motor units longitudinally across experimental sessions with high‐density surface electromyography
topic Techniques for Physiology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5330923/
https://www.ncbi.nlm.nih.gov/pubmed/28032343
http://dx.doi.org/10.1113/JP273662
work_keys_str_mv AT martinezvaldese trackingmotorunitslongitudinallyacrossexperimentalsessionswithhighdensitysurfaceelectromyography
AT negrof trackingmotorunitslongitudinallyacrossexperimentalsessionswithhighdensitysurfaceelectromyography
AT lainecm trackingmotorunitslongitudinallyacrossexperimentalsessionswithhighdensitysurfaceelectromyography
AT fallad trackingmotorunitslongitudinallyacrossexperimentalsessionswithhighdensitysurfaceelectromyography
AT mayerf trackingmotorunitslongitudinallyacrossexperimentalsessionswithhighdensitysurfaceelectromyography
AT farinad trackingmotorunitslongitudinallyacrossexperimentalsessionswithhighdensitysurfaceelectromyography