Cargando…

Magnetization switching in ferromagnets by adsorbed chiral molecules without current or external magnetic field

Ferromagnets are commonly magnetized by either external magnetic fields or spin polarized currents. The manipulation of magnetization by spin-current occurs through the spin-transfer-torque effect, which is applied, for example, in modern magnetoresistive random access memory. However, the current d...

Descripción completa

Detalles Bibliográficos
Autores principales: Ben Dor, Oren, Yochelis, Shira, Radko, Anna, Vankayala, Kiran, Capua, Eyal, Capua, Amir, Yang, See-Hun, Baczewski, Lech Tomasz, Parkin, Stuart Stephen Papworth, Naaman, Ron, Paltiel, Yossi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5331337/
https://www.ncbi.nlm.nih.gov/pubmed/28230054
http://dx.doi.org/10.1038/ncomms14567
_version_ 1782511354645577728
author Ben Dor, Oren
Yochelis, Shira
Radko, Anna
Vankayala, Kiran
Capua, Eyal
Capua, Amir
Yang, See-Hun
Baczewski, Lech Tomasz
Parkin, Stuart Stephen Papworth
Naaman, Ron
Paltiel, Yossi
author_facet Ben Dor, Oren
Yochelis, Shira
Radko, Anna
Vankayala, Kiran
Capua, Eyal
Capua, Amir
Yang, See-Hun
Baczewski, Lech Tomasz
Parkin, Stuart Stephen Papworth
Naaman, Ron
Paltiel, Yossi
author_sort Ben Dor, Oren
collection PubMed
description Ferromagnets are commonly magnetized by either external magnetic fields or spin polarized currents. The manipulation of magnetization by spin-current occurs through the spin-transfer-torque effect, which is applied, for example, in modern magnetoresistive random access memory. However, the current density required for the spin-transfer torque is of the order of 1 × 10(6) A·cm(−2), or about 1 × 10(25) electrons s(−1) cm(−2). This relatively high current density significantly affects the devices' structure and performance. Here we demonstrate magnetization switching of ferromagnetic thin layers that is induced solely by adsorption of chiral molecules. In this case, about 10(13) electrons per cm(2) are sufficient to induce magnetization reversal. The direction of the magnetization depends on the handedness of the adsorbed chiral molecules. Local magnetization switching is achieved by adsorbing a chiral self-assembled molecular monolayer on a gold-coated ferromagnetic layer with perpendicular magnetic anisotropy. These results present a simple low-power magnetization mechanism when operating at ambient conditions.
format Online
Article
Text
id pubmed-5331337
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher Nature Publishing Group
record_format MEDLINE/PubMed
spelling pubmed-53313372017-03-21 Magnetization switching in ferromagnets by adsorbed chiral molecules without current or external magnetic field Ben Dor, Oren Yochelis, Shira Radko, Anna Vankayala, Kiran Capua, Eyal Capua, Amir Yang, See-Hun Baczewski, Lech Tomasz Parkin, Stuart Stephen Papworth Naaman, Ron Paltiel, Yossi Nat Commun Article Ferromagnets are commonly magnetized by either external magnetic fields or spin polarized currents. The manipulation of magnetization by spin-current occurs through the spin-transfer-torque effect, which is applied, for example, in modern magnetoresistive random access memory. However, the current density required for the spin-transfer torque is of the order of 1 × 10(6) A·cm(−2), or about 1 × 10(25) electrons s(−1) cm(−2). This relatively high current density significantly affects the devices' structure and performance. Here we demonstrate magnetization switching of ferromagnetic thin layers that is induced solely by adsorption of chiral molecules. In this case, about 10(13) electrons per cm(2) are sufficient to induce magnetization reversal. The direction of the magnetization depends on the handedness of the adsorbed chiral molecules. Local magnetization switching is achieved by adsorbing a chiral self-assembled molecular monolayer on a gold-coated ferromagnetic layer with perpendicular magnetic anisotropy. These results present a simple low-power magnetization mechanism when operating at ambient conditions. Nature Publishing Group 2017-02-23 /pmc/articles/PMC5331337/ /pubmed/28230054 http://dx.doi.org/10.1038/ncomms14567 Text en Copyright © 2017, The Author(s) http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/
spellingShingle Article
Ben Dor, Oren
Yochelis, Shira
Radko, Anna
Vankayala, Kiran
Capua, Eyal
Capua, Amir
Yang, See-Hun
Baczewski, Lech Tomasz
Parkin, Stuart Stephen Papworth
Naaman, Ron
Paltiel, Yossi
Magnetization switching in ferromagnets by adsorbed chiral molecules without current or external magnetic field
title Magnetization switching in ferromagnets by adsorbed chiral molecules without current or external magnetic field
title_full Magnetization switching in ferromagnets by adsorbed chiral molecules without current or external magnetic field
title_fullStr Magnetization switching in ferromagnets by adsorbed chiral molecules without current or external magnetic field
title_full_unstemmed Magnetization switching in ferromagnets by adsorbed chiral molecules without current or external magnetic field
title_short Magnetization switching in ferromagnets by adsorbed chiral molecules without current or external magnetic field
title_sort magnetization switching in ferromagnets by adsorbed chiral molecules without current or external magnetic field
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5331337/
https://www.ncbi.nlm.nih.gov/pubmed/28230054
http://dx.doi.org/10.1038/ncomms14567
work_keys_str_mv AT bendororen magnetizationswitchinginferromagnetsbyadsorbedchiralmoleculeswithoutcurrentorexternalmagneticfield
AT yochelisshira magnetizationswitchinginferromagnetsbyadsorbedchiralmoleculeswithoutcurrentorexternalmagneticfield
AT radkoanna magnetizationswitchinginferromagnetsbyadsorbedchiralmoleculeswithoutcurrentorexternalmagneticfield
AT vankayalakiran magnetizationswitchinginferromagnetsbyadsorbedchiralmoleculeswithoutcurrentorexternalmagneticfield
AT capuaeyal magnetizationswitchinginferromagnetsbyadsorbedchiralmoleculeswithoutcurrentorexternalmagneticfield
AT capuaamir magnetizationswitchinginferromagnetsbyadsorbedchiralmoleculeswithoutcurrentorexternalmagneticfield
AT yangseehun magnetizationswitchinginferromagnetsbyadsorbedchiralmoleculeswithoutcurrentorexternalmagneticfield
AT baczewskilechtomasz magnetizationswitchinginferromagnetsbyadsorbedchiralmoleculeswithoutcurrentorexternalmagneticfield
AT parkinstuartstephenpapworth magnetizationswitchinginferromagnetsbyadsorbedchiralmoleculeswithoutcurrentorexternalmagneticfield
AT naamanron magnetizationswitchinginferromagnetsbyadsorbedchiralmoleculeswithoutcurrentorexternalmagneticfield
AT paltielyossi magnetizationswitchinginferromagnetsbyadsorbedchiralmoleculeswithoutcurrentorexternalmagneticfield