Cargando…

Conformational equilibria and intrinsic affinities define integrin activation

We show that the three conformational states of integrin α(5)β(1) have discrete free energies and define activation by measuring intrinsic affinities for ligand of each state and the equilibria linking them. The 5,000‐fold higher affinity of the extended‐open state than the bent‐closed and extended‐...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Jing, Su, Yang, Xia, Wei, Qin, Yan, Humphries, Martin J, Vestweber, Dietmar, Cabañas, Carlos, Lu, Chafen, Springer, Timothy A
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5331762/
https://www.ncbi.nlm.nih.gov/pubmed/28122868
http://dx.doi.org/10.15252/embj.201695803
_version_ 1782511442441797632
author Li, Jing
Su, Yang
Xia, Wei
Qin, Yan
Humphries, Martin J
Vestweber, Dietmar
Cabañas, Carlos
Lu, Chafen
Springer, Timothy A
author_facet Li, Jing
Su, Yang
Xia, Wei
Qin, Yan
Humphries, Martin J
Vestweber, Dietmar
Cabañas, Carlos
Lu, Chafen
Springer, Timothy A
author_sort Li, Jing
collection PubMed
description We show that the three conformational states of integrin α(5)β(1) have discrete free energies and define activation by measuring intrinsic affinities for ligand of each state and the equilibria linking them. The 5,000‐fold higher affinity of the extended‐open state than the bent‐closed and extended‐closed states demonstrates profound regulation of affinity. Free energy requirements for activation are defined with protein fragments and intact α(5)β(1). On the surface of K562 cells, α(5)β(1) is 99.8% bent‐closed. Stabilization of the bent conformation by integrin transmembrane and cytoplasmic domains must be overcome by cellular energy input to stabilize extension. Following extension, headpiece opening is energetically favored. N‐glycans and leg domains in each subunit that connect the ligand‐binding head to the membrane repel or crowd one another and regulate conformational equilibria in favor of headpiece opening. The results suggest new principles for regulating signaling in the large class of receptors built from extracellular domains in tandem with single‐span transmembrane domains.
format Online
Article
Text
id pubmed-5331762
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-53317622017-03-06 Conformational equilibria and intrinsic affinities define integrin activation Li, Jing Su, Yang Xia, Wei Qin, Yan Humphries, Martin J Vestweber, Dietmar Cabañas, Carlos Lu, Chafen Springer, Timothy A EMBO J Articles We show that the three conformational states of integrin α(5)β(1) have discrete free energies and define activation by measuring intrinsic affinities for ligand of each state and the equilibria linking them. The 5,000‐fold higher affinity of the extended‐open state than the bent‐closed and extended‐closed states demonstrates profound regulation of affinity. Free energy requirements for activation are defined with protein fragments and intact α(5)β(1). On the surface of K562 cells, α(5)β(1) is 99.8% bent‐closed. Stabilization of the bent conformation by integrin transmembrane and cytoplasmic domains must be overcome by cellular energy input to stabilize extension. Following extension, headpiece opening is energetically favored. N‐glycans and leg domains in each subunit that connect the ligand‐binding head to the membrane repel or crowd one another and regulate conformational equilibria in favor of headpiece opening. The results suggest new principles for regulating signaling in the large class of receptors built from extracellular domains in tandem with single‐span transmembrane domains. John Wiley and Sons Inc. 2017-01-25 2017-03-01 /pmc/articles/PMC5331762/ /pubmed/28122868 http://dx.doi.org/10.15252/embj.201695803 Text en © 2017 The Authors. Published under the terms of the CC BY 4.0 license This is an open access article under the terms of the Creative Commons Attribution 4.0 (http://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Articles
Li, Jing
Su, Yang
Xia, Wei
Qin, Yan
Humphries, Martin J
Vestweber, Dietmar
Cabañas, Carlos
Lu, Chafen
Springer, Timothy A
Conformational equilibria and intrinsic affinities define integrin activation
title Conformational equilibria and intrinsic affinities define integrin activation
title_full Conformational equilibria and intrinsic affinities define integrin activation
title_fullStr Conformational equilibria and intrinsic affinities define integrin activation
title_full_unstemmed Conformational equilibria and intrinsic affinities define integrin activation
title_short Conformational equilibria and intrinsic affinities define integrin activation
title_sort conformational equilibria and intrinsic affinities define integrin activation
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5331762/
https://www.ncbi.nlm.nih.gov/pubmed/28122868
http://dx.doi.org/10.15252/embj.201695803
work_keys_str_mv AT lijing conformationalequilibriaandintrinsicaffinitiesdefineintegrinactivation
AT suyang conformationalequilibriaandintrinsicaffinitiesdefineintegrinactivation
AT xiawei conformationalequilibriaandintrinsicaffinitiesdefineintegrinactivation
AT qinyan conformationalequilibriaandintrinsicaffinitiesdefineintegrinactivation
AT humphriesmartinj conformationalequilibriaandintrinsicaffinitiesdefineintegrinactivation
AT vestweberdietmar conformationalequilibriaandintrinsicaffinitiesdefineintegrinactivation
AT cabanascarlos conformationalequilibriaandintrinsicaffinitiesdefineintegrinactivation
AT luchafen conformationalequilibriaandintrinsicaffinitiesdefineintegrinactivation
AT springertimothya conformationalequilibriaandintrinsicaffinitiesdefineintegrinactivation