Cargando…
Conformational equilibria and intrinsic affinities define integrin activation
We show that the three conformational states of integrin α(5)β(1) have discrete free energies and define activation by measuring intrinsic affinities for ligand of each state and the equilibria linking them. The 5,000‐fold higher affinity of the extended‐open state than the bent‐closed and extended‐...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5331762/ https://www.ncbi.nlm.nih.gov/pubmed/28122868 http://dx.doi.org/10.15252/embj.201695803 |
_version_ | 1782511442441797632 |
---|---|
author | Li, Jing Su, Yang Xia, Wei Qin, Yan Humphries, Martin J Vestweber, Dietmar Cabañas, Carlos Lu, Chafen Springer, Timothy A |
author_facet | Li, Jing Su, Yang Xia, Wei Qin, Yan Humphries, Martin J Vestweber, Dietmar Cabañas, Carlos Lu, Chafen Springer, Timothy A |
author_sort | Li, Jing |
collection | PubMed |
description | We show that the three conformational states of integrin α(5)β(1) have discrete free energies and define activation by measuring intrinsic affinities for ligand of each state and the equilibria linking them. The 5,000‐fold higher affinity of the extended‐open state than the bent‐closed and extended‐closed states demonstrates profound regulation of affinity. Free energy requirements for activation are defined with protein fragments and intact α(5)β(1). On the surface of K562 cells, α(5)β(1) is 99.8% bent‐closed. Stabilization of the bent conformation by integrin transmembrane and cytoplasmic domains must be overcome by cellular energy input to stabilize extension. Following extension, headpiece opening is energetically favored. N‐glycans and leg domains in each subunit that connect the ligand‐binding head to the membrane repel or crowd one another and regulate conformational equilibria in favor of headpiece opening. The results suggest new principles for regulating signaling in the large class of receptors built from extracellular domains in tandem with single‐span transmembrane domains. |
format | Online Article Text |
id | pubmed-5331762 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-53317622017-03-06 Conformational equilibria and intrinsic affinities define integrin activation Li, Jing Su, Yang Xia, Wei Qin, Yan Humphries, Martin J Vestweber, Dietmar Cabañas, Carlos Lu, Chafen Springer, Timothy A EMBO J Articles We show that the three conformational states of integrin α(5)β(1) have discrete free energies and define activation by measuring intrinsic affinities for ligand of each state and the equilibria linking them. The 5,000‐fold higher affinity of the extended‐open state than the bent‐closed and extended‐closed states demonstrates profound regulation of affinity. Free energy requirements for activation are defined with protein fragments and intact α(5)β(1). On the surface of K562 cells, α(5)β(1) is 99.8% bent‐closed. Stabilization of the bent conformation by integrin transmembrane and cytoplasmic domains must be overcome by cellular energy input to stabilize extension. Following extension, headpiece opening is energetically favored. N‐glycans and leg domains in each subunit that connect the ligand‐binding head to the membrane repel or crowd one another and regulate conformational equilibria in favor of headpiece opening. The results suggest new principles for regulating signaling in the large class of receptors built from extracellular domains in tandem with single‐span transmembrane domains. John Wiley and Sons Inc. 2017-01-25 2017-03-01 /pmc/articles/PMC5331762/ /pubmed/28122868 http://dx.doi.org/10.15252/embj.201695803 Text en © 2017 The Authors. Published under the terms of the CC BY 4.0 license This is an open access article under the terms of the Creative Commons Attribution 4.0 (http://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Articles Li, Jing Su, Yang Xia, Wei Qin, Yan Humphries, Martin J Vestweber, Dietmar Cabañas, Carlos Lu, Chafen Springer, Timothy A Conformational equilibria and intrinsic affinities define integrin activation |
title | Conformational equilibria and intrinsic affinities define integrin activation |
title_full | Conformational equilibria and intrinsic affinities define integrin activation |
title_fullStr | Conformational equilibria and intrinsic affinities define integrin activation |
title_full_unstemmed | Conformational equilibria and intrinsic affinities define integrin activation |
title_short | Conformational equilibria and intrinsic affinities define integrin activation |
title_sort | conformational equilibria and intrinsic affinities define integrin activation |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5331762/ https://www.ncbi.nlm.nih.gov/pubmed/28122868 http://dx.doi.org/10.15252/embj.201695803 |
work_keys_str_mv | AT lijing conformationalequilibriaandintrinsicaffinitiesdefineintegrinactivation AT suyang conformationalequilibriaandintrinsicaffinitiesdefineintegrinactivation AT xiawei conformationalequilibriaandintrinsicaffinitiesdefineintegrinactivation AT qinyan conformationalequilibriaandintrinsicaffinitiesdefineintegrinactivation AT humphriesmartinj conformationalequilibriaandintrinsicaffinitiesdefineintegrinactivation AT vestweberdietmar conformationalequilibriaandintrinsicaffinitiesdefineintegrinactivation AT cabanascarlos conformationalequilibriaandintrinsicaffinitiesdefineintegrinactivation AT luchafen conformationalequilibriaandintrinsicaffinitiesdefineintegrinactivation AT springertimothya conformationalequilibriaandintrinsicaffinitiesdefineintegrinactivation |