Cargando…
Virion Structure of Black Queen Cell Virus, a Common Honeybee Pathogen
Viral diseases are a major threat to honeybee (Apis mellifera) populations worldwide and therefore an important factor in reliable crop pollination and food security. Black queen cell virus (BQCV) is the etiological agent of a fatal disease of honeybee queen larvae and pupae. The virus belongs to th...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Society for Microbiology
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5331821/ https://www.ncbi.nlm.nih.gov/pubmed/28077635 http://dx.doi.org/10.1128/JVI.02100-16 |
_version_ | 1782511448128225280 |
---|---|
author | Spurny, Radovan Přidal, Antonín Pálková, Lenka Kiem, Hoa Khanh Tran de Miranda, Joachim R. Plevka, Pavel |
author_facet | Spurny, Radovan Přidal, Antonín Pálková, Lenka Kiem, Hoa Khanh Tran de Miranda, Joachim R. Plevka, Pavel |
author_sort | Spurny, Radovan |
collection | PubMed |
description | Viral diseases are a major threat to honeybee (Apis mellifera) populations worldwide and therefore an important factor in reliable crop pollination and food security. Black queen cell virus (BQCV) is the etiological agent of a fatal disease of honeybee queen larvae and pupae. The virus belongs to the genus Triatovirus from the family Dicistroviridae, which is part of the order Picornavirales. Here we present a crystal structure of BQCV determined to a resolution of 3.4 Å. The virion is formed by 60 copies of each of the major capsid proteins VP1, VP2, and VP3; however, there is no density corresponding to a 75-residue-long minor capsid protein VP4 encoded by the BQCV genome. We show that the VP4 subunits are present in the crystallized virions that are infectious. This aspect of the BQCV virion is similar to that of the previously characterized triatoma virus and supports the recent establishment of the separate genus Triatovirus within the family Dicistroviridae. The C terminus of VP1 and CD loops of capsid proteins VP1 and VP3 of BQCV form 34-Å-tall finger-like protrusions at the virion surface. The protrusions are larger than those of related dicistroviruses. IMPORTANCE The western honeybee is the most important pollinator of all, and it is required to sustain the agricultural production and biodiversity of wild flowering plants. However, honeybee populations worldwide are suffering from virus infections that cause colony losses. One of the most common, and least known, honeybee pathogens is black queen cell virus (BQCV), which at high titers causes queen larvae and pupae to turn black and die. Here we present the three-dimensional virion structure of BQCV, determined by X-ray crystallography. The structure of BQCV reveals large protrusions on the virion surface. Capsid protein VP1 of BQCV does not contain a hydrophobic pocket. Therefore, the BQCV virion structure provides evidence that capsid-binding antiviral compounds that can prevent the replication of vertebrate picornaviruses may be ineffective against honeybee virus infections. |
format | Online Article Text |
id | pubmed-5331821 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | American Society for Microbiology |
record_format | MEDLINE/PubMed |
spelling | pubmed-53318212017-03-13 Virion Structure of Black Queen Cell Virus, a Common Honeybee Pathogen Spurny, Radovan Přidal, Antonín Pálková, Lenka Kiem, Hoa Khanh Tran de Miranda, Joachim R. Plevka, Pavel J Virol Structure and Assembly Viral diseases are a major threat to honeybee (Apis mellifera) populations worldwide and therefore an important factor in reliable crop pollination and food security. Black queen cell virus (BQCV) is the etiological agent of a fatal disease of honeybee queen larvae and pupae. The virus belongs to the genus Triatovirus from the family Dicistroviridae, which is part of the order Picornavirales. Here we present a crystal structure of BQCV determined to a resolution of 3.4 Å. The virion is formed by 60 copies of each of the major capsid proteins VP1, VP2, and VP3; however, there is no density corresponding to a 75-residue-long minor capsid protein VP4 encoded by the BQCV genome. We show that the VP4 subunits are present in the crystallized virions that are infectious. This aspect of the BQCV virion is similar to that of the previously characterized triatoma virus and supports the recent establishment of the separate genus Triatovirus within the family Dicistroviridae. The C terminus of VP1 and CD loops of capsid proteins VP1 and VP3 of BQCV form 34-Å-tall finger-like protrusions at the virion surface. The protrusions are larger than those of related dicistroviruses. IMPORTANCE The western honeybee is the most important pollinator of all, and it is required to sustain the agricultural production and biodiversity of wild flowering plants. However, honeybee populations worldwide are suffering from virus infections that cause colony losses. One of the most common, and least known, honeybee pathogens is black queen cell virus (BQCV), which at high titers causes queen larvae and pupae to turn black and die. Here we present the three-dimensional virion structure of BQCV, determined by X-ray crystallography. The structure of BQCV reveals large protrusions on the virion surface. Capsid protein VP1 of BQCV does not contain a hydrophobic pocket. Therefore, the BQCV virion structure provides evidence that capsid-binding antiviral compounds that can prevent the replication of vertebrate picornaviruses may be ineffective against honeybee virus infections. American Society for Microbiology 2017-02-28 /pmc/articles/PMC5331821/ /pubmed/28077635 http://dx.doi.org/10.1128/JVI.02100-16 Text en Copyright © 2017 Spurny et al. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license (http://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Structure and Assembly Spurny, Radovan Přidal, Antonín Pálková, Lenka Kiem, Hoa Khanh Tran de Miranda, Joachim R. Plevka, Pavel Virion Structure of Black Queen Cell Virus, a Common Honeybee Pathogen |
title | Virion Structure of Black Queen Cell Virus, a Common Honeybee Pathogen |
title_full | Virion Structure of Black Queen Cell Virus, a Common Honeybee Pathogen |
title_fullStr | Virion Structure of Black Queen Cell Virus, a Common Honeybee Pathogen |
title_full_unstemmed | Virion Structure of Black Queen Cell Virus, a Common Honeybee Pathogen |
title_short | Virion Structure of Black Queen Cell Virus, a Common Honeybee Pathogen |
title_sort | virion structure of black queen cell virus, a common honeybee pathogen |
topic | Structure and Assembly |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5331821/ https://www.ncbi.nlm.nih.gov/pubmed/28077635 http://dx.doi.org/10.1128/JVI.02100-16 |
work_keys_str_mv | AT spurnyradovan virionstructureofblackqueencellvirusacommonhoneybeepathogen AT pridalantonin virionstructureofblackqueencellvirusacommonhoneybeepathogen AT palkovalenka virionstructureofblackqueencellvirusacommonhoneybeepathogen AT kiemhoakhanhtran virionstructureofblackqueencellvirusacommonhoneybeepathogen AT demirandajoachimr virionstructureofblackqueencellvirusacommonhoneybeepathogen AT plevkapavel virionstructureofblackqueencellvirusacommonhoneybeepathogen |