Cargando…

Genome-wide siRNA screen of genes regulating the LPS-induced TNF-α response in human macrophages

The mammalian innate immune system senses many bacterial stimuli through the toll-like receptor (TLR) family. Activation of the TLR4 receptor by bacterial lipopolysaccharide (LPS) is the most widely studied TLR pathway due to its central role in host responses to gram-negative bacterial infection an...

Descripción completa

Detalles Bibliográficos
Autores principales: Sun, Jing, Katz, Samuel, Dutta, Bhaskar, Wang, Ze, Fraser, Iain D.C.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5332009/
https://www.ncbi.nlm.nih.gov/pubmed/28248930
http://dx.doi.org/10.1038/sdata.2017.7
Descripción
Sumario:The mammalian innate immune system senses many bacterial stimuli through the toll-like receptor (TLR) family. Activation of the TLR4 receptor by bacterial lipopolysaccharide (LPS) is the most widely studied TLR pathway due to its central role in host responses to gram-negative bacterial infection and its contribution to endotoxemia and sepsis. Here we describe a genome-wide siRNA screen to identify genes regulating the human macrophage TNF-α response to LPS. We include a secondary validation screen conducted with six independent siRNAs per gene to facilitate removal of off-target screen hits. We also provide microarray data from the same LPS-treated macrophage cells to facilitate downstream data analysis. Tertiary screening with multiple TLR ligands and a microbial extract demonstrate that novel screen hits have broad effects on the innate inflammatory response to microbial stimuli. These data provide a resource for analyzing gene function in the predominant pathway driving inflammatory cytokine expression in human macrophages.