Cargando…

A Novel Unsupervised Segmentation Approach Quantifies Tumor Tissue Populations Using Multiparametric MRI: First Results with Histological Validation

PURPOSE: We aimed to precisely estimate intra-tumoral heterogeneity using spatially regularized spectral clustering (SRSC) on multiparametric MRI data and compare the efficacy of SRSC with the previously reported segmentation techniques in MRI studies. PROCEDURES: Six NMRI nu/nu mice bearing subcuta...

Descripción completa

Detalles Bibliográficos
Autores principales: Katiyar, Prateek, Divine, Mathew R., Kohlhofer, Ursula, Quintanilla-Martinez, Leticia, Schölkopf, Bernhard, Pichler, Bernd J., Disselhorst, Jonathan A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer US 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5332060/
https://www.ncbi.nlm.nih.gov/pubmed/27734253
http://dx.doi.org/10.1007/s11307-016-1009-y
_version_ 1782511483442167808
author Katiyar, Prateek
Divine, Mathew R.
Kohlhofer, Ursula
Quintanilla-Martinez, Leticia
Schölkopf, Bernhard
Pichler, Bernd J.
Disselhorst, Jonathan A.
author_facet Katiyar, Prateek
Divine, Mathew R.
Kohlhofer, Ursula
Quintanilla-Martinez, Leticia
Schölkopf, Bernhard
Pichler, Bernd J.
Disselhorst, Jonathan A.
author_sort Katiyar, Prateek
collection PubMed
description PURPOSE: We aimed to precisely estimate intra-tumoral heterogeneity using spatially regularized spectral clustering (SRSC) on multiparametric MRI data and compare the efficacy of SRSC with the previously reported segmentation techniques in MRI studies. PROCEDURES: Six NMRI nu/nu mice bearing subcutaneous human glioblastoma U87 MG tumors were scanned using a dedicated small animal 7T magnetic resonance imaging (MRI) scanner. The data consisted of T2 weighted images, apparent diffusion coefficient maps, and pre- and post-contrast T2 and T2* maps. Following each scan, the tumors were excised into 2–3-mm thin slices parallel to the axial field of view and processed for histological staining. The MRI data were segmented using SRSC, K-means, fuzzy C-means, and Gaussian mixture modeling to estimate the fractional population of necrotic, peri-necrotic, and viable regions and validated with the fractional population obtained from histology. RESULTS: While the aforementioned methods overestimated peri-necrotic and underestimated viable fractions, SRSC accurately predicted the fractional population of all three tumor tissue types and exhibited strong correlations (r(necrotic) = 0.92, r(peri-necrotic) = 0.82 and r(viable) = 0.98) with the histology. CONCLUSIONS: The precise identification of necrotic, peri-necrotic and viable areas using SRSC may greatly assist in cancer treatment planning and add a new dimension to MRI-guided tumor biopsy procedures. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s11307-016-1009-y) contains supplementary material, which is available to authorized users.
format Online
Article
Text
id pubmed-5332060
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher Springer US
record_format MEDLINE/PubMed
spelling pubmed-53320602017-05-12 A Novel Unsupervised Segmentation Approach Quantifies Tumor Tissue Populations Using Multiparametric MRI: First Results with Histological Validation Katiyar, Prateek Divine, Mathew R. Kohlhofer, Ursula Quintanilla-Martinez, Leticia Schölkopf, Bernhard Pichler, Bernd J. Disselhorst, Jonathan A. Mol Imaging Biol Brief Article PURPOSE: We aimed to precisely estimate intra-tumoral heterogeneity using spatially regularized spectral clustering (SRSC) on multiparametric MRI data and compare the efficacy of SRSC with the previously reported segmentation techniques in MRI studies. PROCEDURES: Six NMRI nu/nu mice bearing subcutaneous human glioblastoma U87 MG tumors were scanned using a dedicated small animal 7T magnetic resonance imaging (MRI) scanner. The data consisted of T2 weighted images, apparent diffusion coefficient maps, and pre- and post-contrast T2 and T2* maps. Following each scan, the tumors were excised into 2–3-mm thin slices parallel to the axial field of view and processed for histological staining. The MRI data were segmented using SRSC, K-means, fuzzy C-means, and Gaussian mixture modeling to estimate the fractional population of necrotic, peri-necrotic, and viable regions and validated with the fractional population obtained from histology. RESULTS: While the aforementioned methods overestimated peri-necrotic and underestimated viable fractions, SRSC accurately predicted the fractional population of all three tumor tissue types and exhibited strong correlations (r(necrotic) = 0.92, r(peri-necrotic) = 0.82 and r(viable) = 0.98) with the histology. CONCLUSIONS: The precise identification of necrotic, peri-necrotic and viable areas using SRSC may greatly assist in cancer treatment planning and add a new dimension to MRI-guided tumor biopsy procedures. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s11307-016-1009-y) contains supplementary material, which is available to authorized users. Springer US 2016-10-12 2017 /pmc/articles/PMC5332060/ /pubmed/27734253 http://dx.doi.org/10.1007/s11307-016-1009-y Text en © The Author(s) 2016 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
spellingShingle Brief Article
Katiyar, Prateek
Divine, Mathew R.
Kohlhofer, Ursula
Quintanilla-Martinez, Leticia
Schölkopf, Bernhard
Pichler, Bernd J.
Disselhorst, Jonathan A.
A Novel Unsupervised Segmentation Approach Quantifies Tumor Tissue Populations Using Multiparametric MRI: First Results with Histological Validation
title A Novel Unsupervised Segmentation Approach Quantifies Tumor Tissue Populations Using Multiparametric MRI: First Results with Histological Validation
title_full A Novel Unsupervised Segmentation Approach Quantifies Tumor Tissue Populations Using Multiparametric MRI: First Results with Histological Validation
title_fullStr A Novel Unsupervised Segmentation Approach Quantifies Tumor Tissue Populations Using Multiparametric MRI: First Results with Histological Validation
title_full_unstemmed A Novel Unsupervised Segmentation Approach Quantifies Tumor Tissue Populations Using Multiparametric MRI: First Results with Histological Validation
title_short A Novel Unsupervised Segmentation Approach Quantifies Tumor Tissue Populations Using Multiparametric MRI: First Results with Histological Validation
title_sort novel unsupervised segmentation approach quantifies tumor tissue populations using multiparametric mri: first results with histological validation
topic Brief Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5332060/
https://www.ncbi.nlm.nih.gov/pubmed/27734253
http://dx.doi.org/10.1007/s11307-016-1009-y
work_keys_str_mv AT katiyarprateek anovelunsupervisedsegmentationapproachquantifiestumortissuepopulationsusingmultiparametricmrifirstresultswithhistologicalvalidation
AT divinemathewr anovelunsupervisedsegmentationapproachquantifiestumortissuepopulationsusingmultiparametricmrifirstresultswithhistologicalvalidation
AT kohlhoferursula anovelunsupervisedsegmentationapproachquantifiestumortissuepopulationsusingmultiparametricmrifirstresultswithhistologicalvalidation
AT quintanillamartinezleticia anovelunsupervisedsegmentationapproachquantifiestumortissuepopulationsusingmultiparametricmrifirstresultswithhistologicalvalidation
AT scholkopfbernhard anovelunsupervisedsegmentationapproachquantifiestumortissuepopulationsusingmultiparametricmrifirstresultswithhistologicalvalidation
AT pichlerberndj anovelunsupervisedsegmentationapproachquantifiestumortissuepopulationsusingmultiparametricmrifirstresultswithhistologicalvalidation
AT disselhorstjonathana anovelunsupervisedsegmentationapproachquantifiestumortissuepopulationsusingmultiparametricmrifirstresultswithhistologicalvalidation
AT katiyarprateek novelunsupervisedsegmentationapproachquantifiestumortissuepopulationsusingmultiparametricmrifirstresultswithhistologicalvalidation
AT divinemathewr novelunsupervisedsegmentationapproachquantifiestumortissuepopulationsusingmultiparametricmrifirstresultswithhistologicalvalidation
AT kohlhoferursula novelunsupervisedsegmentationapproachquantifiestumortissuepopulationsusingmultiparametricmrifirstresultswithhistologicalvalidation
AT quintanillamartinezleticia novelunsupervisedsegmentationapproachquantifiestumortissuepopulationsusingmultiparametricmrifirstresultswithhistologicalvalidation
AT scholkopfbernhard novelunsupervisedsegmentationapproachquantifiestumortissuepopulationsusingmultiparametricmrifirstresultswithhistologicalvalidation
AT pichlerberndj novelunsupervisedsegmentationapproachquantifiestumortissuepopulationsusingmultiparametricmrifirstresultswithhistologicalvalidation
AT disselhorstjonathana novelunsupervisedsegmentationapproachquantifiestumortissuepopulationsusingmultiparametricmrifirstresultswithhistologicalvalidation