Cargando…
Phosphorylation of a constrained azacyclic FTY720 analog enhances anti-leukemic activity without inducing S1P receptor activation
The frequency of poor outcomes in relapsed leukemia patients underscores the need for novel therapeutic approaches. The FDA-approved immunosuppressant FTY720 limits leukemia progression by activating protein phosphatase 2A and restricting nutrient access. Unfortunately, FTY720 cannot be re-purposed...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5332311/ https://www.ncbi.nlm.nih.gov/pubmed/27573555 http://dx.doi.org/10.1038/leu.2016.244 |
Sumario: | The frequency of poor outcomes in relapsed leukemia patients underscores the need for novel therapeutic approaches. The FDA-approved immunosuppressant FTY720 limits leukemia progression by activating protein phosphatase 2A and restricting nutrient access. Unfortunately, FTY720 cannot be re-purposed for use in cancer patients due to on-target toxicity associated with S1P receptor activation at the elevated, anti-neoplastic dose. Here we show that the constrained azacyclic FTY720 analog SH-RF-177 lacks S1P receptor activity but maintains anti-leukemic activity in vitro and in vivo. SH-RF-177 was not only more potent than FTY720, but killed via a distinct mechanism. Phosphorylation is dispensable for FTY720’s anti-leukemic actions. However, chemical biology and genetic approaches demonstrated that the sphingosine kinase 2- (SPHK2) mediated phosphorylation of SH-RF-177 led to engagement of a pro-apoptotic target and increased potency. The cytotoxicity of membrane-permeant FTY720 phosphonate esters suggests that the enhanced potency of SH-RF-177 stems from its more efficient phosphorylation. The tight inverse correlation between SH-RF-177 IC(50) and SPHK2 mRNA expression suggests a useful biomarker for SH-RF-177 sensitivity. In summary, these studies indicate that FTY720 analogs that are efficiently phosphorylated but fail to activate S1P receptors may be superior anti-leukemic agents compared to compounds that avoid cardiotoxicity by eliminating phosphorylation. |
---|