Cargando…

Relationship between Deck Level, Body Surface Temperature and Carcass Damages in Italian Heavy Pigs after Short Journeys at Different Unloading Environmental Conditions

SIMPLE SUMMARY: Transport duration and thermal conditions can negatively affect pig welfare and carcass quality. The effects of short journeys (30 min) in different thermal-humidity conditions on the body surface temperature of live heavy pigs and carcass skin damage were examined. Body temperature...

Descripción completa

Detalles Bibliográficos
Autores principales: Arduini, Agnese, Redaelli, Veronica, Luzi, Fabio, Dall’Olio, Stefania, Pace, Vincenzo, Nanni Costa, Leonardo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5332931/
https://www.ncbi.nlm.nih.gov/pubmed/28208592
http://dx.doi.org/10.3390/ani7020010
Descripción
Sumario:SIMPLE SUMMARY: Transport duration and thermal conditions can negatively affect pig welfare and carcass quality. The effects of short journeys (30 min) in different thermal-humidity conditions on the body surface temperature of live heavy pigs and carcass skin damage were examined. Body temperature increased with increasing Temperature Humidity Index (THI) class. The highest and lowest body surface temperatures were found in pigs located on the middle and upper decks, respectively. THI class significantly affected skin damage scores, which increased with increasing THI class. Even at relatively low temperatures and THI, the results of this study suggested the need to increase the control of environmental conditions in the truck during short-distance transport of pigs, in order to improve welfare and reduce loss of carcass value. ABSTRACT: In order to evaluate the relationships between deck level, body surface temperature and carcass damages after a short journey (30 min), 10 deliveries of Italian heavy pigs, including a total of 1400 animals from one farm, were examined. Within 5 min after the arrival at the abattoir, the vehicles were unloaded. Environmental temperature and relative humidity were recorded and a Temperature Humidity Index (THI) was calculated. After unloading, maximum temperatures of dorsal and ocular regions were measured by a thermal camera on groups of pigs from each of the unloaded decks. After dehairing, quarters and whole carcasses were evaluated subjectively by a trained operator for skin damage using a four-point scale. On the basis of THI at unloading, deliveries were grouped into three classes. Data of body surface temperature and skin damage score were analysed in a model including THI class, deck level and their interaction. Regardless of pig location in the truck, the maximum temperature of the dorsal and ocular regions increased with increasing THI class. Within each THI class, the highest and lowest body surface temperatures were found in pigs located on the middle and upper decks, respectively. Only THI class was found to affect the skin damage score (p < 0.05), which increased on quarters and whole carcasses with increasing THI class. The results of this study on short-distance transport of Italian heavy pigs highlighted the need to control and ameliorate the environmental conditions in the trucks, even at relatively low temperature and THI, in order to improve welfare and reduce loss of carcass value.