Cargando…
One-Step Reduction and Surface Modification of Graphene Oxide by 3-Hydroxy-2-Naphthoic Acid Hydrazide and Its Polypropylene Nanocomposites
3-Hydroxy-2-naphthoic acid hydrazide (HNH), a new reductant and modifier, was applied to reduce and modify graphene oxide (GO) in a one-step process. The obtained HNH reduced graphene oxide (HNH-rGO) was characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), Raman spectroscopy...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5333010/ https://www.ncbi.nlm.nih.gov/pubmed/28336858 http://dx.doi.org/10.3390/nano7020025 |
Sumario: | 3-Hydroxy-2-naphthoic acid hydrazide (HNH), a new reductant and modifier, was applied to reduce and modify graphene oxide (GO) in a one-step process. The obtained HNH reduced graphene oxide (HNH-rGO) was characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), Raman spectroscopy, X-ray photoelectron spectroscopic (XPS) and Fourier transform infrared spectra (FTIR). The results demonstrated that GO was successfully reduced to graphene and the surface of HNH-rGO was grafted with HNH. The interlayer space was increased from 0.751 nm to 1.921 nm, and its agglomeration was much more attenuated compared with GO. HNH-rGO/polypropylene and graphene/polypropylene composites were synthesized through melt-blending method. The viscosity was enhanced with increased addition of graphene and surface modified graphene demonstrated stronger rheological behavior improving effect than the untreated graphene. |
---|