Cargando…

A Critical Balance: dNTPs and the Maintenance of Genome Stability

A crucial factor in maintaining genome stability is establishing deoxynucleoside triphosphate (dNTP) levels within a range that is optimal for chromosomal replication. Since DNA replication is relevant to a wide range of other chromosomal activities, these may all be directly or indirectly affected...

Descripción completa

Detalles Bibliográficos
Autores principales: Pai, Chen-Chun, Kearsey, Stephen E.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5333046/
https://www.ncbi.nlm.nih.gov/pubmed/28146119
http://dx.doi.org/10.3390/genes8020057
Descripción
Sumario:A crucial factor in maintaining genome stability is establishing deoxynucleoside triphosphate (dNTP) levels within a range that is optimal for chromosomal replication. Since DNA replication is relevant to a wide range of other chromosomal activities, these may all be directly or indirectly affected when dNTP concentrations deviate from a physiologically normal range. The importance of understanding these consequences is relevant to genetic disorders that disturb dNTP levels, and strategies that inhibit dNTP synthesis in cancer chemotherapy and for treatment of other disorders. We review here how abnormal dNTP levels affect DNA replication and discuss the consequences for genome stability.