Cargando…

The respective effect of under-rib convection and pressure drop of flow fields on the performance of PEM fuel cells

The flow field configuration plays an important role on the performance of proton exchange membrane fuel cells (PEMFCs). For instance, channel/rib width and total channel cross-sectional area determine the under-rib convection and pressure drop respectively, both of which directly influence the wate...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Chao, Zhang, Qinglei, Shen, Shuiyun, Yan, Xiaohui, Zhu, Fengjuan, Cheng, Xiaojing, Zhang, Junliang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5333141/
https://www.ncbi.nlm.nih.gov/pubmed/28251983
http://dx.doi.org/10.1038/srep43447
Descripción
Sumario:The flow field configuration plays an important role on the performance of proton exchange membrane fuel cells (PEMFCs). For instance, channel/rib width and total channel cross-sectional area determine the under-rib convection and pressure drop respectively, both of which directly influence the water removal, in turn affecting the oxygen supply and cathodic oxygen reduction reaction. In this study, effects of under-rib convection and pressure drop on cell performance are investigated experimentally and numerically by adjusting the channel/rib width and channel cross-sectional area of flow fields. The results show that the performance differences with various flow field configurations mainly derive from the oxygen transport resistance which is determined by the water accumulation degree, and the cell performance would benefit from the narrower channels and smaller cross sections. It reveals that at low current densities when water starts to accumulate in GDL at under-rib regions, the under-rib convection plays a more important role in water removal than pressure drop does; in contrast, at high current densities when water starts to accumulate in channels, the pressure drop dominates the water removal to facilitate the oxygen transport to the catalyst layer.