Cargando…

Simultaneous imaging of magnetic field and temperature distributions by magneto optical indicator microscopy

We report a simultaneous imaging method of the temperature and the magnetic field distributions based on the magneto optical indicator microscopy. The present method utilizes an optical indicator composed of a bismuth-substituted yttrium iron garnet thin film, and visualizes the magnetic field and t...

Descripción completa

Detalles Bibliográficos
Autores principales: Lee, Hanju, Jeon, Sunghoon, Friedman, Barry, Lee, Kiejin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5333159/
https://www.ncbi.nlm.nih.gov/pubmed/28252018
http://dx.doi.org/10.1038/srep43804
Descripción
Sumario:We report a simultaneous imaging method of the temperature and the magnetic field distributions based on the magneto optical indicator microscopy. The present method utilizes an optical indicator composed of a bismuth-substituted yttrium iron garnet thin film, and visualizes the magnetic field and temperature distributions through the magneto-optical effect and the temperature dependent optical absorption of the garnet thin film. By using a printed circuit board that carries an electric current as a device under test, we showed that the present method can visualize the magnetic field and temperature distribution simultaneously with a comparable temperature sensitivity (0.2 K) to that of existing conventional thermal imagers. The present technique provides a practical way to get a high resolution magnetic and thermal image at the same time, which is valuable in investigating how thermal variation results in a change of the operation state of a micrometer sized electronic device or material.