Cargando…

Transcending the slow bimolecular recombination in lead-halide perovskites for electroluminescence

The slow bimolecular recombination that drives three-dimensional lead-halide perovskites' outstanding photovoltaic performance is conversely a fundamental limitation for electroluminescence. Under electroluminescence working conditions with typical charge densities lower than 10(15) cm(−3), def...

Descripción completa

Detalles Bibliográficos
Autores principales: Xing, Guichuan, Wu, Bo, Wu, Xiangyang, Li, Mingjie, Du, Bin, Wei, Qi, Guo, Jia, Yeow, Edwin K. L., Sum, Tze Chien, Huang, Wei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5333353/
https://www.ncbi.nlm.nih.gov/pubmed/28239146
http://dx.doi.org/10.1038/ncomms14558
Descripción
Sumario:The slow bimolecular recombination that drives three-dimensional lead-halide perovskites' outstanding photovoltaic performance is conversely a fundamental limitation for electroluminescence. Under electroluminescence working conditions with typical charge densities lower than 10(15) cm(−3), defect-states trapping in three-dimensional perovskites competes effectively with the bimolecular radiative recombination. Herein, we overcome this limitation using van-der-Waals-coupled Ruddlesden-Popper perovskite multi-quantum-wells. Injected charge carriers are rapidly localized from adjacent thin few layer (n≤4) multi-quantum-wells to the thick (n≥5) multi-quantum-wells with extremely high efficiency (over 85%) through quantum coupling. Light emission originates from excitonic recombination in the thick multi-quantum-wells at much higher decay rate and efficiency than bimolecular recombination in three-dimensional perovskites. These multi-quantum-wells retain the simple solution processability and high charge carrier mobility of two-dimensional lead-halide perovskites. Importantly, these Ruddlesden-Popper perovskites offer new functionalities unavailable in single phase constituents, permitting the transcendence of the slow bimolecular recombination bottleneck in lead-halide perovskites for efficient electroluminescence.