Cargando…
Molecular typing of Mycobacterium tuberculosis complex isolated from pulmonary tuberculosis patients in central Ethiopia
BACKGROUND: Identification of the types of strains of Mycobacterium tuberculosis (M. tuberculosis) complex causing tuberculosis (TB) could contribute to TB control program of specific geographic region as well as it could add knowledge onto the existing literature on TB worldwide. The objective of t...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5333391/ https://www.ncbi.nlm.nih.gov/pubmed/28249607 http://dx.doi.org/10.1186/s12879-017-2267-2 |
Sumario: | BACKGROUND: Identification of the types of strains of Mycobacterium tuberculosis (M. tuberculosis) complex causing tuberculosis (TB) could contribute to TB control program of specific geographic region as well as it could add knowledge onto the existing literature on TB worldwide. The objective of the present study was to identify the species and strains of M. tuberculosis complex causing pulmonary tuberculosis in central Ethiopia. METHODS: A health institution- based cross-sectional study was conducted on 338 smear positive TB cases visiting three hospitals between October 2012 and September 2013. Morning and spot sputum samples were collected before the starting of treatment regimens. Thus, a total of 338 pooled sputum samples collected from these cases. Samples were cultured on Löwenstein Jensen media and the isolates were identified by the region of difference (RD) 9 based polymerase chain reaction (PCR) and spoligotyping. RESULT: Of the total isolates 98.6% of the isolates were identified to be M. tuberculosis while the remaining 1.4% were identified as M. africanum. Further, typing of M. tuberculosis using spoligotyping lead to the identification of 90 different strains of M. tuberculosis. Of these strains, 32 were clustered consisting of more than one isolate while the remaining 58 strains were unique consisting of single isolate. Thus, 79.3% (223/281) of the isolates were found in the clustered while only 20.6% (58/281) of the strains were unique. Forty-five of the spolgotyping patterns were registeredin the SITVIT2 or SpolDB4 database in while the remaining 45 were notfound in the database and hence were orphan strains. The dominant strains were SIT53, SIT149, and SIT54, consisting of 43, 37 and 34 isolates, respectively. Classification of the spoligotype patterns using TB-insight RUN TB-Lineage showed that 86.8, 6.4, 5, 1.4% ofthe isolatesbelonged to the Euro-American lineage, East-African-Indian, Indo-oceanic and M. africanum, respectively. CONCLUSION: The identification of clustered and new strains using spolygotyping in present study does not give conclusive finding as spoligotyping has low discriminatory power. Thus, further identification of these isolates using mycobacterial interspersed repetitive unit-variable number tandem repeat (MIRU-VENTR) and or whole genome sequencing (WGS) recommended. |
---|