Cargando…
Positive-Unlabeled Learning for inferring drug interactions based on heterogeneous attributes
BACKGROUND: Investigating and understanding drug-drug interactions (DDIs) is important in improving the effectiveness of clinical care. DDIs can occur when two or more drugs are administered together. Experimentally based DDI detection methods require a large cost and time. Hence, there is a great i...
Autores principales: | Hameed, Pathima Nusrath, Verspoor, Karin, Kusljic, Snezana, Halgamuge, Saman |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5333429/ https://www.ncbi.nlm.nih.gov/pubmed/28249566 http://dx.doi.org/10.1186/s12859-017-1546-7 |
Ejemplares similares
-
A two-tiered unsupervised clustering approach for drug repositioning through heterogeneous data integration
por: Hameed, Pathima Nusrath, et al.
Publicado: (2018) -
A physarum-inspired prize-collecting steiner tree approach to identify subnetworks for drug repositioning
por: Sun, Yahui, et al.
Publicado: (2016) -
Screening drug-target interactions with positive-unlabeled learning
por: Peng, Lihong, et al.
Publicado: (2017) -
DDI-PULearn: a positive-unlabeled learning method for large-scale prediction of drug-drug interactions
por: Zheng, Yi, et al.
Publicado: (2019) -
Positive-unlabeled learning for disease gene identification
por: Yang, Peng, et al.
Publicado: (2012)