Cargando…
RNA-Seq analysis of salinity stress–responsive transcriptome in the liver of spotted sea bass (Lateolabrax maculatus)
Salinity is one of the most prominent abiotic factors, which greatly influence reproduction, development, growth, physiological and metabolic activities of fishes. Spotted sea bass (Lateolabrax maculatus), as a euryhaline marine teleost, has extraordinary ability to deal with a wide range of salinit...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5333887/ https://www.ncbi.nlm.nih.gov/pubmed/28253338 http://dx.doi.org/10.1371/journal.pone.0173238 |
_version_ | 1782511790570078208 |
---|---|
author | Zhang, Xiaoyan Wen, Haishen Wang, Hailiang Ren, Yuanyuan Zhao, Ji Li, Yun |
author_facet | Zhang, Xiaoyan Wen, Haishen Wang, Hailiang Ren, Yuanyuan Zhao, Ji Li, Yun |
author_sort | Zhang, Xiaoyan |
collection | PubMed |
description | Salinity is one of the most prominent abiotic factors, which greatly influence reproduction, development, growth, physiological and metabolic activities of fishes. Spotted sea bass (Lateolabrax maculatus), as a euryhaline marine teleost, has extraordinary ability to deal with a wide range of salinity changes. However, this species is devoid of genomic resources, and no study has been conducted at the transcriptomic level to determine genes responsible for salinity regulation, which impedes the understanding of the fundamental mechanism conferring tolerance to salinity fluctuations. Liver, as the major metabolic organ, is the key source supplying energy for iono- and osmoregulation in fish, however, little attention has been paid to its salinity-related functions but which should not be ignored. In this study, we perform RNA-Seq analysis to identify genes involved in salinity adaptation and osmoregulation in liver of spotted sea bass, generating from the fishes exposed to low and high salinity water (5 vs 30ppt). After de novo assembly, annotation and differential gene expression analysis, a total of 455 genes were differentially expressed, including 184 up-regulated and 271 down-regulated transcripts in low salinity-acclimated fish group compared with that in high salinity-acclimated group. A number of genes with a potential role in salinity adaptation for spotted sea bass were classified into five functional categories based on the gene ontology (GO) and enrichment analysis, which include genes involved in metabolites and ion transporters, energy metabolism, signal transduction, immune response and structure reorganization. The candidate genes identified in L. maculates liver provide valuable information to explore new pathways related to fish salinity and osmotic regulation. Besides, the transcriptomic sequencing data supplies significant resources for identification of novel genes and further studying biological questions in spotted sea bass. |
format | Online Article Text |
id | pubmed-5333887 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-53338872017-03-10 RNA-Seq analysis of salinity stress–responsive transcriptome in the liver of spotted sea bass (Lateolabrax maculatus) Zhang, Xiaoyan Wen, Haishen Wang, Hailiang Ren, Yuanyuan Zhao, Ji Li, Yun PLoS One Research Article Salinity is one of the most prominent abiotic factors, which greatly influence reproduction, development, growth, physiological and metabolic activities of fishes. Spotted sea bass (Lateolabrax maculatus), as a euryhaline marine teleost, has extraordinary ability to deal with a wide range of salinity changes. However, this species is devoid of genomic resources, and no study has been conducted at the transcriptomic level to determine genes responsible for salinity regulation, which impedes the understanding of the fundamental mechanism conferring tolerance to salinity fluctuations. Liver, as the major metabolic organ, is the key source supplying energy for iono- and osmoregulation in fish, however, little attention has been paid to its salinity-related functions but which should not be ignored. In this study, we perform RNA-Seq analysis to identify genes involved in salinity adaptation and osmoregulation in liver of spotted sea bass, generating from the fishes exposed to low and high salinity water (5 vs 30ppt). After de novo assembly, annotation and differential gene expression analysis, a total of 455 genes were differentially expressed, including 184 up-regulated and 271 down-regulated transcripts in low salinity-acclimated fish group compared with that in high salinity-acclimated group. A number of genes with a potential role in salinity adaptation for spotted sea bass were classified into five functional categories based on the gene ontology (GO) and enrichment analysis, which include genes involved in metabolites and ion transporters, energy metabolism, signal transduction, immune response and structure reorganization. The candidate genes identified in L. maculates liver provide valuable information to explore new pathways related to fish salinity and osmotic regulation. Besides, the transcriptomic sequencing data supplies significant resources for identification of novel genes and further studying biological questions in spotted sea bass. Public Library of Science 2017-03-02 /pmc/articles/PMC5333887/ /pubmed/28253338 http://dx.doi.org/10.1371/journal.pone.0173238 Text en © 2017 Zhang et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Zhang, Xiaoyan Wen, Haishen Wang, Hailiang Ren, Yuanyuan Zhao, Ji Li, Yun RNA-Seq analysis of salinity stress–responsive transcriptome in the liver of spotted sea bass (Lateolabrax maculatus) |
title | RNA-Seq analysis of salinity stress–responsive transcriptome in the liver of spotted sea bass (Lateolabrax maculatus) |
title_full | RNA-Seq analysis of salinity stress–responsive transcriptome in the liver of spotted sea bass (Lateolabrax maculatus) |
title_fullStr | RNA-Seq analysis of salinity stress–responsive transcriptome in the liver of spotted sea bass (Lateolabrax maculatus) |
title_full_unstemmed | RNA-Seq analysis of salinity stress–responsive transcriptome in the liver of spotted sea bass (Lateolabrax maculatus) |
title_short | RNA-Seq analysis of salinity stress–responsive transcriptome in the liver of spotted sea bass (Lateolabrax maculatus) |
title_sort | rna-seq analysis of salinity stress–responsive transcriptome in the liver of spotted sea bass (lateolabrax maculatus) |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5333887/ https://www.ncbi.nlm.nih.gov/pubmed/28253338 http://dx.doi.org/10.1371/journal.pone.0173238 |
work_keys_str_mv | AT zhangxiaoyan rnaseqanalysisofsalinitystressresponsivetranscriptomeintheliverofspottedseabasslateolabraxmaculatus AT wenhaishen rnaseqanalysisofsalinitystressresponsivetranscriptomeintheliverofspottedseabasslateolabraxmaculatus AT wanghailiang rnaseqanalysisofsalinitystressresponsivetranscriptomeintheliverofspottedseabasslateolabraxmaculatus AT renyuanyuan rnaseqanalysisofsalinitystressresponsivetranscriptomeintheliverofspottedseabasslateolabraxmaculatus AT zhaoji rnaseqanalysisofsalinitystressresponsivetranscriptomeintheliverofspottedseabasslateolabraxmaculatus AT liyun rnaseqanalysisofsalinitystressresponsivetranscriptomeintheliverofspottedseabasslateolabraxmaculatus |