Cargando…

Applying of Decision Tree Analysis to Risk Factors Associated with Pressure Ulcers in Long-Term Care Facilities

OBJECTIVES: The purpose of this study was to use decision tree analysis to explore the factors associated with pressure ulcers (PUs) among elderly people admitted to Korean long-term care facilities. METHODS: The data were extracted from the 2014 National Inpatient Sample (NIS)—data of Health Insura...

Descripción completa

Detalles Bibliográficos
Autores principales: Moon, Mikyung, Lee, Soo-Kyoung
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Korean Society of Medical Informatics 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5334131/
https://www.ncbi.nlm.nih.gov/pubmed/28261530
http://dx.doi.org/10.4258/hir.2017.23.1.43
_version_ 1782511812095246336
author Moon, Mikyung
Lee, Soo-Kyoung
author_facet Moon, Mikyung
Lee, Soo-Kyoung
author_sort Moon, Mikyung
collection PubMed
description OBJECTIVES: The purpose of this study was to use decision tree analysis to explore the factors associated with pressure ulcers (PUs) among elderly people admitted to Korean long-term care facilities. METHODS: The data were extracted from the 2014 National Inpatient Sample (NIS)—data of Health Insurance Review and Assessment Service (HIRA). A MapReduce-based program was implemented to join and filter 5 tables of the NIS. The outcome predicted by the decision tree model was the prevalence of PUs as defined by the Korean Standard Classification of Disease-7 (KCD-7; code L89(*)). Using R 3.3.1, a decision tree was generated with the finalized 15,856 cases and 830 variables. RESULTS: The decision tree displayed 15 subgroups with 8 variables showing 0.804 accuracy, 0.820 sensitivity, and 0.787 specificity. The most significant primary predictor of PUs was length of stay less than 0.5 day. Other predictors were the presence of an infectious wound dressing, followed by having diagnoses numbering less than 3.5 and the presence of a simple dressing. Among diagnoses, “injuries to the hip and thigh” was the top predictor ranking 5th overall. Total hospital cost exceeding 2,200,000 Korean won (US $2,000) rounded out the top 7. CONCLUSIONS: These results support previous studies that showed length of stay, comorbidity, and total hospital cost were associated with PUs. Moreover, wound dressings were commonly used to treat PUs. They also show that machine learning, such as a decision tree, could effectively predict PUs using big data.
format Online
Article
Text
id pubmed-5334131
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher Korean Society of Medical Informatics
record_format MEDLINE/PubMed
spelling pubmed-53341312017-03-03 Applying of Decision Tree Analysis to Risk Factors Associated with Pressure Ulcers in Long-Term Care Facilities Moon, Mikyung Lee, Soo-Kyoung Healthc Inform Res Original Article OBJECTIVES: The purpose of this study was to use decision tree analysis to explore the factors associated with pressure ulcers (PUs) among elderly people admitted to Korean long-term care facilities. METHODS: The data were extracted from the 2014 National Inpatient Sample (NIS)—data of Health Insurance Review and Assessment Service (HIRA). A MapReduce-based program was implemented to join and filter 5 tables of the NIS. The outcome predicted by the decision tree model was the prevalence of PUs as defined by the Korean Standard Classification of Disease-7 (KCD-7; code L89(*)). Using R 3.3.1, a decision tree was generated with the finalized 15,856 cases and 830 variables. RESULTS: The decision tree displayed 15 subgroups with 8 variables showing 0.804 accuracy, 0.820 sensitivity, and 0.787 specificity. The most significant primary predictor of PUs was length of stay less than 0.5 day. Other predictors were the presence of an infectious wound dressing, followed by having diagnoses numbering less than 3.5 and the presence of a simple dressing. Among diagnoses, “injuries to the hip and thigh” was the top predictor ranking 5th overall. Total hospital cost exceeding 2,200,000 Korean won (US $2,000) rounded out the top 7. CONCLUSIONS: These results support previous studies that showed length of stay, comorbidity, and total hospital cost were associated with PUs. Moreover, wound dressings were commonly used to treat PUs. They also show that machine learning, such as a decision tree, could effectively predict PUs using big data. Korean Society of Medical Informatics 2017-01 2017-01-31 /pmc/articles/PMC5334131/ /pubmed/28261530 http://dx.doi.org/10.4258/hir.2017.23.1.43 Text en © 2017 The Korean Society of Medical Informatics http://creativecommons.org/licenses/by-nc/4.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Original Article
Moon, Mikyung
Lee, Soo-Kyoung
Applying of Decision Tree Analysis to Risk Factors Associated with Pressure Ulcers in Long-Term Care Facilities
title Applying of Decision Tree Analysis to Risk Factors Associated with Pressure Ulcers in Long-Term Care Facilities
title_full Applying of Decision Tree Analysis to Risk Factors Associated with Pressure Ulcers in Long-Term Care Facilities
title_fullStr Applying of Decision Tree Analysis to Risk Factors Associated with Pressure Ulcers in Long-Term Care Facilities
title_full_unstemmed Applying of Decision Tree Analysis to Risk Factors Associated with Pressure Ulcers in Long-Term Care Facilities
title_short Applying of Decision Tree Analysis to Risk Factors Associated with Pressure Ulcers in Long-Term Care Facilities
title_sort applying of decision tree analysis to risk factors associated with pressure ulcers in long-term care facilities
topic Original Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5334131/
https://www.ncbi.nlm.nih.gov/pubmed/28261530
http://dx.doi.org/10.4258/hir.2017.23.1.43
work_keys_str_mv AT moonmikyung applyingofdecisiontreeanalysistoriskfactorsassociatedwithpressureulcersinlongtermcarefacilities
AT leesookyoung applyingofdecisiontreeanalysistoriskfactorsassociatedwithpressureulcersinlongtermcarefacilities