Cargando…

Extrachromosomal oncogene amplification drives tumor evolution and genetic heterogeneity

Human cells have twenty-three pairs of chromosomes but in cancer, genes can be amplified in chromosomes or in circular extrachromosomal DNA (ECDNA), whose frequency and functional significance are not understood(1–4). We performed whole genome sequencing, structural modeling and cytogenetic analyses...

Descripción completa

Detalles Bibliográficos
Autores principales: Turner, Kristen M., Deshpande, Viraj, Beyter, Doruk, Koga, Tomoyuki, Rusert, Jessica, Lee, Catherine, Li, Bin, Arden, Karen, Ren, Bing, Nathanson, David A., Kornblum, Harley I., Taylor, Michael D., Kaushal, Sharmeela, Cavenee, Webster K., Wechsler-Reya, Robert, Furnari, Frank B., Vandenberg, Scott R., Rao, P. Nagesh, Wahl, Geoffrey M., Bafna, Vineet, Mischel, Paul S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5334176/
https://www.ncbi.nlm.nih.gov/pubmed/28178237
http://dx.doi.org/10.1038/nature21356
_version_ 1782511819905040384
author Turner, Kristen M.
Deshpande, Viraj
Beyter, Doruk
Koga, Tomoyuki
Rusert, Jessica
Lee, Catherine
Li, Bin
Arden, Karen
Ren, Bing
Nathanson, David A.
Kornblum, Harley I.
Taylor, Michael D.
Kaushal, Sharmeela
Cavenee, Webster K.
Wechsler-Reya, Robert
Furnari, Frank B.
Vandenberg, Scott R.
Rao, P. Nagesh
Wahl, Geoffrey M.
Bafna, Vineet
Mischel, Paul S.
author_facet Turner, Kristen M.
Deshpande, Viraj
Beyter, Doruk
Koga, Tomoyuki
Rusert, Jessica
Lee, Catherine
Li, Bin
Arden, Karen
Ren, Bing
Nathanson, David A.
Kornblum, Harley I.
Taylor, Michael D.
Kaushal, Sharmeela
Cavenee, Webster K.
Wechsler-Reya, Robert
Furnari, Frank B.
Vandenberg, Scott R.
Rao, P. Nagesh
Wahl, Geoffrey M.
Bafna, Vineet
Mischel, Paul S.
author_sort Turner, Kristen M.
collection PubMed
description Human cells have twenty-three pairs of chromosomes but in cancer, genes can be amplified in chromosomes or in circular extrachromosomal DNA (ECDNA), whose frequency and functional significance are not understood(1–4). We performed whole genome sequencing, structural modeling and cytogenetic analyses of 17 different cancer types, including 2572 metaphases, and developed ECdetect to conduct unbiased integrated ECDNA detection and analysis. ECDNA was found in nearly half of human cancers varying by tumor type, but almost never in normal cells. Driver oncogenes were amplified most commonly on ECDNA, elevating transcript level. Mathematical modeling predicted that ECDNA amplification elevates oncogene copy number and increases intratumoral heterogeneity more effectively than chromosomal amplification, which we validated by quantitative analyses of cancer samples. These results suggest that ECDNA contributes to accelerated evolution in cancer.
format Online
Article
Text
id pubmed-5334176
institution National Center for Biotechnology Information
language English
publishDate 2017
record_format MEDLINE/PubMed
spelling pubmed-53341762017-08-08 Extrachromosomal oncogene amplification drives tumor evolution and genetic heterogeneity Turner, Kristen M. Deshpande, Viraj Beyter, Doruk Koga, Tomoyuki Rusert, Jessica Lee, Catherine Li, Bin Arden, Karen Ren, Bing Nathanson, David A. Kornblum, Harley I. Taylor, Michael D. Kaushal, Sharmeela Cavenee, Webster K. Wechsler-Reya, Robert Furnari, Frank B. Vandenberg, Scott R. Rao, P. Nagesh Wahl, Geoffrey M. Bafna, Vineet Mischel, Paul S. Nature Article Human cells have twenty-three pairs of chromosomes but in cancer, genes can be amplified in chromosomes or in circular extrachromosomal DNA (ECDNA), whose frequency and functional significance are not understood(1–4). We performed whole genome sequencing, structural modeling and cytogenetic analyses of 17 different cancer types, including 2572 metaphases, and developed ECdetect to conduct unbiased integrated ECDNA detection and analysis. ECDNA was found in nearly half of human cancers varying by tumor type, but almost never in normal cells. Driver oncogenes were amplified most commonly on ECDNA, elevating transcript level. Mathematical modeling predicted that ECDNA amplification elevates oncogene copy number and increases intratumoral heterogeneity more effectively than chromosomal amplification, which we validated by quantitative analyses of cancer samples. These results suggest that ECDNA contributes to accelerated evolution in cancer. 2017-02-08 2017-03-02 /pmc/articles/PMC5334176/ /pubmed/28178237 http://dx.doi.org/10.1038/nature21356 Text en Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms
spellingShingle Article
Turner, Kristen M.
Deshpande, Viraj
Beyter, Doruk
Koga, Tomoyuki
Rusert, Jessica
Lee, Catherine
Li, Bin
Arden, Karen
Ren, Bing
Nathanson, David A.
Kornblum, Harley I.
Taylor, Michael D.
Kaushal, Sharmeela
Cavenee, Webster K.
Wechsler-Reya, Robert
Furnari, Frank B.
Vandenberg, Scott R.
Rao, P. Nagesh
Wahl, Geoffrey M.
Bafna, Vineet
Mischel, Paul S.
Extrachromosomal oncogene amplification drives tumor evolution and genetic heterogeneity
title Extrachromosomal oncogene amplification drives tumor evolution and genetic heterogeneity
title_full Extrachromosomal oncogene amplification drives tumor evolution and genetic heterogeneity
title_fullStr Extrachromosomal oncogene amplification drives tumor evolution and genetic heterogeneity
title_full_unstemmed Extrachromosomal oncogene amplification drives tumor evolution and genetic heterogeneity
title_short Extrachromosomal oncogene amplification drives tumor evolution and genetic heterogeneity
title_sort extrachromosomal oncogene amplification drives tumor evolution and genetic heterogeneity
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5334176/
https://www.ncbi.nlm.nih.gov/pubmed/28178237
http://dx.doi.org/10.1038/nature21356
work_keys_str_mv AT turnerkristenm extrachromosomaloncogeneamplificationdrivestumorevolutionandgeneticheterogeneity
AT deshpandeviraj extrachromosomaloncogeneamplificationdrivestumorevolutionandgeneticheterogeneity
AT beyterdoruk extrachromosomaloncogeneamplificationdrivestumorevolutionandgeneticheterogeneity
AT kogatomoyuki extrachromosomaloncogeneamplificationdrivestumorevolutionandgeneticheterogeneity
AT rusertjessica extrachromosomaloncogeneamplificationdrivestumorevolutionandgeneticheterogeneity
AT leecatherine extrachromosomaloncogeneamplificationdrivestumorevolutionandgeneticheterogeneity
AT libin extrachromosomaloncogeneamplificationdrivestumorevolutionandgeneticheterogeneity
AT ardenkaren extrachromosomaloncogeneamplificationdrivestumorevolutionandgeneticheterogeneity
AT renbing extrachromosomaloncogeneamplificationdrivestumorevolutionandgeneticheterogeneity
AT nathansondavida extrachromosomaloncogeneamplificationdrivestumorevolutionandgeneticheterogeneity
AT kornblumharleyi extrachromosomaloncogeneamplificationdrivestumorevolutionandgeneticheterogeneity
AT taylormichaeld extrachromosomaloncogeneamplificationdrivestumorevolutionandgeneticheterogeneity
AT kaushalsharmeela extrachromosomaloncogeneamplificationdrivestumorevolutionandgeneticheterogeneity
AT caveneewebsterk extrachromosomaloncogeneamplificationdrivestumorevolutionandgeneticheterogeneity
AT wechslerreyarobert extrachromosomaloncogeneamplificationdrivestumorevolutionandgeneticheterogeneity
AT furnarifrankb extrachromosomaloncogeneamplificationdrivestumorevolutionandgeneticheterogeneity
AT vandenbergscottr extrachromosomaloncogeneamplificationdrivestumorevolutionandgeneticheterogeneity
AT raopnagesh extrachromosomaloncogeneamplificationdrivestumorevolutionandgeneticheterogeneity
AT wahlgeoffreym extrachromosomaloncogeneamplificationdrivestumorevolutionandgeneticheterogeneity
AT bafnavineet extrachromosomaloncogeneamplificationdrivestumorevolutionandgeneticheterogeneity
AT mischelpauls extrachromosomaloncogeneamplificationdrivestumorevolutionandgeneticheterogeneity