Cargando…

Functional connectivity and microstructural white matter changes in phenocopy frontotemporal dementia

OBJECTIVES: Phenocopy frontotemporal dementia (phFTD) is a rare and poorly understood clinical syndrome. PhFTD shows core behavioural variant FTD (bvFTD) symptoms without associated cognitive deficits and brain abnormalities on conventional MRI and without progression. In contrast to phFTD, function...

Descripción completa

Detalles Bibliográficos
Autores principales: Meijboom, R., Steketee, R. M. E., de Koning, I., Osse, R. J., Jiskoot, L. C., de Jong, F. J., van der Lugt, A., van Swieten, J. C., Smits, M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5334426/
https://www.ncbi.nlm.nih.gov/pubmed/27436017
http://dx.doi.org/10.1007/s00330-016-4490-4
Descripción
Sumario:OBJECTIVES: Phenocopy frontotemporal dementia (phFTD) is a rare and poorly understood clinical syndrome. PhFTD shows core behavioural variant FTD (bvFTD) symptoms without associated cognitive deficits and brain abnormalities on conventional MRI and without progression. In contrast to phFTD, functional connectivity and white matter (WM) microstructural abnormalities have been observed in bvFTD. We hypothesise that phFTD belongs to the same disease spectrum as bvFTD and investigated whether functional connectivity and microstructural WM changes similar to bvFTD are present in phFTD. METHODS: Seven phFTD patients without progression or alternative psychiatric diagnosis, 12 bvFTD patients and 17 controls underwent resting state functional MRI (rs-fMRI) and diffusion tensor imaging (DTI). Default mode network (DMN) connectivity and WM measures were compared between groups. RESULTS: PhFTD showed subtly increased DMN connectivity and subtle microstructural changes in frontal WM tracts. BvFTD showed abnormalities in similar regions as phFTD, but had lower increased DMN connectivity and more extensive microstructural WM changes. CONCLUSIONS: Our findings can be interpreted as neuropathological changes in phFTD and are in support of the hypothesis that phFTD and bvFTD may belong to the same disease spectrum. Advanced MRI techniques, objectively identifying brain abnormalities, would therefore be potentially suited to improve the diagnosis of phFTD. KEY POINTS: • PhFTD shows brain abnormalities that are similar to bvFTD. • PhFTD shows increased functional connectivity in the parietal default mode network. • PhFTD shows microstructural white matter abnormalities in the frontal lobe. • We hypothesise phFTD and bvFTD may belong to the same disease spectrum. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s00330-016-4490-4) contains supplementary material, which is available to authorized users.