Cargando…

Induction of Diverse Bioactive Secondary Metabolites from the Mangrove Endophytic Fungus Trichoderma sp. (Strain 307) by Co-Cultivation with Acinetobacter johnsonii (Strain B2)

Two new sesquiterpenes, microsphaeropsisin B (1) and C (2), and two new de-O-methyllasiodiplodins, (3R, 7R)-7-hydroxy-de-O-methyllasiodiplodin (4) and (3R)-5-oxo-de-O-methyllasiodiplodin (5), together with one new natural product (6) and twelve known compounds (3, 7–17), were isolated from the co-cu...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Liuhong, Niaz, Shah Iram, Khan, Dilfaraz, Wang, Zhen, Zhu, Yonghong, Zhou, Haiyun, Lin, Yongcheng, Li, Jing, Liu, Lan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5334615/
https://www.ncbi.nlm.nih.gov/pubmed/28208607
http://dx.doi.org/10.3390/md15020035
Descripción
Sumario:Two new sesquiterpenes, microsphaeropsisin B (1) and C (2), and two new de-O-methyllasiodiplodins, (3R, 7R)-7-hydroxy-de-O-methyllasiodiplodin (4) and (3R)-5-oxo-de-O-methyllasiodiplodin (5), together with one new natural product (6) and twelve known compounds (3, 7–17), were isolated from the co-cultivation of mangrove endophytic fungus Trichoderma sp. 307 and aquatic pathogenic bacterium Acinetobacter johnsonii B2. Their structures, including absolute configurations, were elucidated by extensive analysis of spectroscopic data, electronic circular dichroism, Mo(2)(AcO)(4)-induced circular dichroism, and comparison with reported data. All of the isolated compounds were tested for their α-glucosidase inhibitory activity and cytotoxicity. New compounds 4 and 5 exhibited potent α-glucosidase inhibitory activity with IC(50) values of 25.8 and 54.6 µM, respectively, which were more potent than the positive control (acarbose, IC(50) = 703.8 µM). The good results of the tested bioactivity allowed us to explore α-glucosidase inhibitors in lasiodiplodins.