Cargando…
Longitudinal Analysis for Disease Progression via Simultaneous Multi-Relational Temporal-Fused Learning
It is highly desirable to predict the progression of Alzheimer's disease (AD) of patients [e.g., to predict conversion of mild cognitive impairment (MCI) to AD], especially longitudinal prediction of AD is important for its early diagnosis. Currently, most existing methods predict different cli...
Autores principales: | Lei, Baiying, Jiang, Feng, Chen, Siping, Ni, Dong, Wang, Tianfu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5335657/ https://www.ncbi.nlm.nih.gov/pubmed/28316569 http://dx.doi.org/10.3389/fnagi.2017.00006 |
Ejemplares similares
-
Multi-task fused sparse learning for mild cognitive impairment identification
por: Yang, Peng, et al.
Publicado: (2018) -
Discriminative Learning for Alzheimer's Disease Diagnosis via Canonical Correlation Analysis and Multimodal Fusion
por: Lei, Baiying, et al.
Publicado: (2016) -
Discriminative Learning for Automatic Staging of Placental Maturity via Multi-layer Fisher Vector
por: Lei, Baiying, et al.
Publicado: (2015) -
Automatic Recognition of Fetal Facial Standard Plane in Ultrasound Image via Fisher Vector
por: Lei, Baiying, et al.
Publicado: (2015) -
Ischemic stroke prediction of patients with carotid atherosclerotic stenosis via multi-modality fused network
por: Lv, Peng, et al.
Publicado: (2023)