Cargando…
Reducing radiation dose to normal brain through a risk adapted dose reduction protocol for patients with favourable subtype anaplastic glioma
AIM: In patients with isocitrate dehydrogenase (IDH) mutated anaplastic glioma determine the dosimetric benefits of delivering radiation therapy using a PET guided integrated boost IMRT technique (ib-IMRT) compared with standard IMRT (s-IMRT) in reducing dose to normal brain. METHODS: Ten patients w...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5335728/ https://www.ncbi.nlm.nih.gov/pubmed/28253929 http://dx.doi.org/10.1186/s13014-017-0782-3 |
_version_ | 1782512095602933760 |
---|---|
author | Back, M. LeMottee, M. Crasta, C. Bailey, D. Wheeler, H. Guo, L. Eade, T. |
author_facet | Back, M. LeMottee, M. Crasta, C. Bailey, D. Wheeler, H. Guo, L. Eade, T. |
author_sort | Back, M. |
collection | PubMed |
description | AIM: In patients with isocitrate dehydrogenase (IDH) mutated anaplastic glioma determine the dosimetric benefits of delivering radiation therapy using a PET guided integrated boost IMRT technique (ib-IMRT) compared with standard IMRT (s-IMRT) in reducing dose to normal brain. METHODS: Ten patients with anaplastic glioma, identified as a favourable molecular subgroup through presence of IDH mutation, and managed with radiation therapy using an ib-IMRT were enrolled into a dosimetric study comparing two RT techniques: s-IMRT to 59.4Gy or ib-IMRT with 59.4/54Gy regions. Gross Tumour volume (GTV) and Clinical Target Volumes (CTV) were determined by MRI, 18F-Fluoroethyltyrosine (FET) and 18F-Fluorodeoxyglucose (FDG) PET imaging. A standard risk Planning Target Volume (PTVsr) receiving 59.4Gy (PTV59.4) in the s-IMRT technique was determined by MRI T2Flair and FET PET. For the ib-IMRT technique this PTVsr volume was treated to 54Gy, and the high-risk PTV (PTVhr) receiving 59.4Gy was determined as a higher risk region by FDG PET and MRI gadolinium enhancement. Standard dosimetric criteria and normal tissue constraints based on recent clinical trials were used in target delineation and planning. Normal Brain was defined as Brain minus CTV. Endpoints for dosimetric evaluation related to mean Brain dose (mBrainDose), brain volume receiving 40Gy (Brainv40) and 20Gy (Brainv20). The variation between the dosimetric endpoints for both techniques was examined using Wilcoxon analysis. RESULTS: The 10 patients had tumours located in temporal (1), parietal (3), occipital (2) and bifrontal (4) regions. In ib-IMRT technique the median volume of PTVhr was 25.5 cm3 compared with PTVsr of 300.0 cm3. For dose to PTVhr the two treatments were equivalent (p = 0.33), and although the ibIMRT had a prescribed 10% dose reduction from 59.4Gy to 54Gy the median reduction was only 5.9%. The ib-IMRT dosimetry was significantly improved in normal brain endpoints specifically mBrainDose (p = 0.007), Brainv40 (p = 0.005) and Brainv20 (p = 0.001), with a median reduction of 9.3%, 19.0 and 10.8% respectively. After a median follow-up of 38 months two patients have progressed, with no isolated relapse in the dose reduction region. CONCLUSION: An approach using ib-IMRT for anaplastic glioma produces significant dosimetric advantages in relation to normal brain dose compared with s-IMRT plan. This is achieved without a significant reduction to the target volume dose despite the reduction in prescribed dose. This technique has advantages to minimise potential late neurocognitive effects from high dose radiation in patients with favorable subtype anaplastic glioma with predicted median survival beyond ten years. |
format | Online Article Text |
id | pubmed-5335728 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-53357282017-03-07 Reducing radiation dose to normal brain through a risk adapted dose reduction protocol for patients with favourable subtype anaplastic glioma Back, M. LeMottee, M. Crasta, C. Bailey, D. Wheeler, H. Guo, L. Eade, T. Radiat Oncol Research AIM: In patients with isocitrate dehydrogenase (IDH) mutated anaplastic glioma determine the dosimetric benefits of delivering radiation therapy using a PET guided integrated boost IMRT technique (ib-IMRT) compared with standard IMRT (s-IMRT) in reducing dose to normal brain. METHODS: Ten patients with anaplastic glioma, identified as a favourable molecular subgroup through presence of IDH mutation, and managed with radiation therapy using an ib-IMRT were enrolled into a dosimetric study comparing two RT techniques: s-IMRT to 59.4Gy or ib-IMRT with 59.4/54Gy regions. Gross Tumour volume (GTV) and Clinical Target Volumes (CTV) were determined by MRI, 18F-Fluoroethyltyrosine (FET) and 18F-Fluorodeoxyglucose (FDG) PET imaging. A standard risk Planning Target Volume (PTVsr) receiving 59.4Gy (PTV59.4) in the s-IMRT technique was determined by MRI T2Flair and FET PET. For the ib-IMRT technique this PTVsr volume was treated to 54Gy, and the high-risk PTV (PTVhr) receiving 59.4Gy was determined as a higher risk region by FDG PET and MRI gadolinium enhancement. Standard dosimetric criteria and normal tissue constraints based on recent clinical trials were used in target delineation and planning. Normal Brain was defined as Brain minus CTV. Endpoints for dosimetric evaluation related to mean Brain dose (mBrainDose), brain volume receiving 40Gy (Brainv40) and 20Gy (Brainv20). The variation between the dosimetric endpoints for both techniques was examined using Wilcoxon analysis. RESULTS: The 10 patients had tumours located in temporal (1), parietal (3), occipital (2) and bifrontal (4) regions. In ib-IMRT technique the median volume of PTVhr was 25.5 cm3 compared with PTVsr of 300.0 cm3. For dose to PTVhr the two treatments were equivalent (p = 0.33), and although the ibIMRT had a prescribed 10% dose reduction from 59.4Gy to 54Gy the median reduction was only 5.9%. The ib-IMRT dosimetry was significantly improved in normal brain endpoints specifically mBrainDose (p = 0.007), Brainv40 (p = 0.005) and Brainv20 (p = 0.001), with a median reduction of 9.3%, 19.0 and 10.8% respectively. After a median follow-up of 38 months two patients have progressed, with no isolated relapse in the dose reduction region. CONCLUSION: An approach using ib-IMRT for anaplastic glioma produces significant dosimetric advantages in relation to normal brain dose compared with s-IMRT plan. This is achieved without a significant reduction to the target volume dose despite the reduction in prescribed dose. This technique has advantages to minimise potential late neurocognitive effects from high dose radiation in patients with favorable subtype anaplastic glioma with predicted median survival beyond ten years. BioMed Central 2017-03-02 /pmc/articles/PMC5335728/ /pubmed/28253929 http://dx.doi.org/10.1186/s13014-017-0782-3 Text en © The Author(s). 2017 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Research Back, M. LeMottee, M. Crasta, C. Bailey, D. Wheeler, H. Guo, L. Eade, T. Reducing radiation dose to normal brain through a risk adapted dose reduction protocol for patients with favourable subtype anaplastic glioma |
title | Reducing radiation dose to normal brain through a risk adapted dose reduction protocol for patients with favourable subtype anaplastic glioma |
title_full | Reducing radiation dose to normal brain through a risk adapted dose reduction protocol for patients with favourable subtype anaplastic glioma |
title_fullStr | Reducing radiation dose to normal brain through a risk adapted dose reduction protocol for patients with favourable subtype anaplastic glioma |
title_full_unstemmed | Reducing radiation dose to normal brain through a risk adapted dose reduction protocol for patients with favourable subtype anaplastic glioma |
title_short | Reducing radiation dose to normal brain through a risk adapted dose reduction protocol for patients with favourable subtype anaplastic glioma |
title_sort | reducing radiation dose to normal brain through a risk adapted dose reduction protocol for patients with favourable subtype anaplastic glioma |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5335728/ https://www.ncbi.nlm.nih.gov/pubmed/28253929 http://dx.doi.org/10.1186/s13014-017-0782-3 |
work_keys_str_mv | AT backm reducingradiationdosetonormalbrainthroughariskadapteddosereductionprotocolforpatientswithfavourablesubtypeanaplasticglioma AT lemotteem reducingradiationdosetonormalbrainthroughariskadapteddosereductionprotocolforpatientswithfavourablesubtypeanaplasticglioma AT crastac reducingradiationdosetonormalbrainthroughariskadapteddosereductionprotocolforpatientswithfavourablesubtypeanaplasticglioma AT baileyd reducingradiationdosetonormalbrainthroughariskadapteddosereductionprotocolforpatientswithfavourablesubtypeanaplasticglioma AT wheelerh reducingradiationdosetonormalbrainthroughariskadapteddosereductionprotocolforpatientswithfavourablesubtypeanaplasticglioma AT guol reducingradiationdosetonormalbrainthroughariskadapteddosereductionprotocolforpatientswithfavourablesubtypeanaplasticglioma AT eadet reducingradiationdosetonormalbrainthroughariskadapteddosereductionprotocolforpatientswithfavourablesubtypeanaplasticglioma |